Version 1.0

Level 2 Certificate in Further Mathematics June 2012

Paper 2 8360/2

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

- M Method marks are awarded for a correct method which could lead to a correct answer.
- A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- B Marks awarded independent of method.
- **M Dep** A method mark dependent on a previous method mark being awarded.
- **B Dep** A mark that can only be awarded if a previous independent mark has been awarded.
- ft Follow through marks. Marks awarded following a mistake in an earlier step.
- **SC** Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- oe Or equivalent. Accept answers that are equivalent.

eg, accept 0.5 as well as $\frac{1}{2}$

Paper 2 - Calculator

Q	Answer	Mark	Comments
		D4	
1	Radius = $\sqrt{36}$ or 6	B1	Diameter = $2\sqrt{36}$ or 12
	2 (×) π (×) their radius	M1	π (×) their diameter
	12π or [37.68, 37.704]	A1	

2	$15x^2 - 8x$	B2	B1 Only one term correct
---	--------------	----	--------------------------

3	8^2 or 4^2 or 64 or 16 or 80 or (-8^2) or (-4^2)	M1	
	$\sqrt{\text{their 8}^2 + \text{their 4}^2}$	M1 Dep	
	8.944() or √80	A1	oe eg $4\sqrt{5}$
			This mark is implied by 8.94
	8.94	B1 ft	ft From any value > 3sf seen or any value given as a surd that is rounded to 3sf

4(a)	Positive	B1	Do not allow if more than one answer selected
4(b)	Negative	B1	Do not allow if more than one answer selected
4(c)	One positive and one negative	B1	Do not allow if more than one answer selected
4(d)	0	B1	Do not allow if more than one answer selected
4(e)	<i>y</i> = -3	B1	Do not allow if more than one answer selected

Q	Answer	Mark	Comments
5(a)	Angle $ACP = x$ or angle PAC (base angles of) isosceles triangle (are equal)	M1	
	Angle $APC = 180 - 2x$ angle sum of triangle (= 180°) and angle $BPC = 2x$ angles on straight line (add to 180°)	M1 Dep	BPC = 2x external angle of triangle (= sum of interior opposite angles)
	Angle $ABC = 2x$ or angle BPC (base angles of) isosceles triangle (are equal)	A1	SC2 'Correct' response but has reason(s) missing or incorrect
5(b)	Angle $ACB = 2x$	M1	May be implied by working
	x + 2x + 2x = 180	M1	oe eg 1 $5x = 180$
			eg 2 90 - $\frac{1}{2}x = 2x$
	36	A1	

6(a)	$6x^2 - 15xy$	B2	B1 Only one correct term
6(b)	$9x^2 - 12xy + 6xy - 8y^2$	M1	ое
			Must have 4 terms with at least 3 correct
	$9x^2 - 12xy + 6xy - 8y^2$	A1	All 4 terms correct
	$9x^2 - 6xy - 8y^2$	A1 ft	ft From M1 A0
6(c)	3:2	B2 ft	ft Their (a) and their (b) with $y = 0$ substituted
			B1 ft Any equivalent unsimplified ratio eg $9x^2$: $6x^2$
			SC1 2:3

Q	Answer	Mark	Comments
7(a)	$-8 \le m+n \le 7$	B2	B1 – 8 or 7 in correct position
7(b)	$0 \le (m+n)^2 \le 64$	B2ft	If (a) is fully correct ft does not apply
			B1 For 0 or 64 in correct position
			If (a) is not fully correct apply ft
			Can only award B2ft if their (a) has one negative value and one positive value
			B1ft for one value in correct position
			Can award a maximum of B1 ft if in (a) both values have the same sign or one value is zero
8(a)	С	B1	Do not allow if more than one answer selected
8(b)	A	B1	Do not allow if more than one answer selected

Q	Answer	Mark	Comments
9(a)	5t + 3 = 4wt + 8w	M1	
U(u)	5t - 4wt = 8w - 3	M1	Separation of terms in <i>t</i> from those not in <i>t</i>
	t(5-4w) = 8w - 3	M1	Factorisation of terms in t
	$t = \frac{8w-3}{5-4w}$	A1 ft	oe eg $t = \frac{3 - 8w}{4w - 5}$
			Must have <i>t</i> =
			Only ft if third M1 and one other M1 gained
9(b)	$\frac{8\times-\frac{1}{8}-3}{5-4\times-\frac{1}{8}}$	M1	Substitution of $w = -\frac{1}{8}$ in their $\frac{8w-3}{5-4w}$
	$5-4\times-\frac{1}{8}$		Their $\frac{8w-3}{5-4w}$ must be in terms of w
	Numerator = -4 or	A1 ft	ft Their $\frac{8w-3}{5-4w}$
	denominator = $5\frac{1}{2}$		This mark can only be gained for correct evaluation of their algebraic numerator or their algebraic denominator
	$-\frac{8}{11}$ or -0.72	A1 ft	ft Their $\frac{8w-3}{5-4w}$
			This mark can only be gained for correct evaluation of their algebraic numerator and their algebraic denominator
			Must be an exact value in simplest form
			SC2 –0.72 or –0.73 or a correct evaluation of their algebraic numerator or their algebraic denominator
Alt 9(b)	$5t + 3 = -\frac{4}{8}(t + 2)$	M1	oe equation
	44t = -32	A1	oe eg $5.5t = -4$
	$-\frac{8}{11}$ or -0.72	A1 ft	ft from their $at = b$ if M1 A0
	11		Must be an exact value in simplest form
			SC2 -0.72 or -0.73

Q	Answer	Mark	Comments
10	sin 28 chosen	B1	cos 62 chosen
	$\frac{7}{\sin 28}$	M1	$\frac{7}{\cos 62}$
	[14.9, 14.9104]	A1	Allow 15 if correct working for M1 seen

11	$\frac{4}{3}\pi x^3 (=) \frac{2}{3}\pi y^3$	M1	oe eg 1 $\frac{4}{3}\pi \times x^{3}$ (=) $\frac{1}{2} \times \frac{4}{3}\pi \times y^{3}$
			eg 2 $y^3 = 2x^3$
	$\left(\frac{y^3}{x^3} =\right) \frac{\frac{4}{3}\pi}{\frac{2}{3}\pi}$ or $y = \sqrt[3]{2}x$	M1 Dep	oe eg $\frac{y^3}{x^3} = 2$
	$2^{\frac{1}{3}}$	A1	$\sqrt[3]{2}$ scores M2 A0

12	$(t+4)(t^2+4t+4t+16)$	M1	oe Must be correct
	$t^{3} + 4t^{2} + 4t^{2} + 16t + 4t^{2} + 16t + 16t + 16t + 64$	M1	ft From their $(t + 4)(t^2 + 4t + 4t + 16)$ oe Must have at least 4 terms correct M2 $t^3 + 3t^2(4) + 3t(4)^2 + 4^3$ oe
	$t^3 + 12t^2 + 48t + 64$	A1	

13	$\frac{16^2 + 9^2 - 20^2}{2 \times 16 \times 9} \ (= -0.21875)$	M1	oe eg $\frac{256+81-400}{288}$ or $-\frac{63}{288}$
			or $-288\cos x = 63$
	$\cos^{-1} \frac{16^2 + 9^2 - 20^2}{2 \times 16 \times 9}$	M1	oe
	2×16×9		This mark implies the first M1
	[102.6, 102.64]	A1	Allow 103 if correct working for M1 M1 seen

Q	Answer	Mark	Comments
14	x coordinate of centre = 2	B1	
	y coordinate of centre = 5	B1	
	$(x - \text{their 2})^2 + (y - \text{their 5})^2$	M1	= 25 not needed for M1
	$(x - \text{their 2})^2 + (y - \text{their 5})^2 = 25$	A1 ft	oe eg Allow 5 ² for 25
			ft From their centre of circle
			Ignore any attempt to expand and simplify

15(a)	$3x^2 - 5$ seen	B1	
	Correct step in attempt to solve their $f(x^2) = 43$ (must be a quadratic equation) $3x^2 = 43 + 5$	M1	oe eg 1 $3x^2 - 5 - 43 = 0$ eg 2 $x^2 = \frac{43 + 5}{3}$
	$x^2 = 16$	A1	(3)(x+4)(x-4)
	4 and –4	A1 ft	ft From M1 A0 if two solutions found SC2 3.56 and -3.56
15(b)	(gradient for $0 \le x \le 4 =$) $\frac{12}{4}$ or 3	M1	oe
	(gradient for $4 < x \le 8 =$) $\frac{12}{-4}$ or -3	M1	oe Accept – their 3
	y = their -3x + c and substitutes (8,0) or (4,12)	M1	y - 0 = their $-3(x - 8)$ or y - 12 = their $-3(x - 4)$
	3x and $-3x + 24$ or $-3(x - 8)in correct places on answer lines$	A2	A1 $3x$ or $-3x + 24$ or $-3(x - 8)$ in correct place on answer line or $y = 3x$ (for $0 \le x \le 4$) or y = -3x + 24 or $y = -3(x - 8)(for 4 < x \le 8)$

Q	Answer	Mark	(Comments
16(a)	$1^{3} - 21(1) + 20 = 0$ or 1 - 21 + 20 = 0	B1	Must have = 0	
	$4^{3} - 21(4) + 20 = 0$ or 64 - 84 + 20 = 0	B1	Must have = 0	
16(b)	$1^{3} - 10(1)^{2} + 29(1) - 20 = 0 \text{ or}$ $1 - 10 + 29 - 20 = 0$ Divides $x^{3} - 10x^{2} + 29x - 20$ by $(x - 1)$ and obtains answer $x^{2} - 9x + 20$ $4^{3} - 10(4)^{2} + 29(4) - 20 = 0 \text{ or}$ $64 - 160 + 116 - 20 = 0$ Divides $x^{3} - 10x^{2} + 29x - 20$ by $(x - 4)$ and obtains answer $x^{2} - 6x + 5$	B1 B1	Must have = 0 Must have = 0	B2 $(x - 1)(x - 4)(x - 5)$ and correct expansion of one pair of brackets eg $(x - 1)(x - 4)(x - 5)$ and $(x^2 - 5x + 4)(x - 5)$ B1 $(x - 1)(x - 4)(x - 5)$
16(c)	(x + 5) as 3rd factor of numerator	B1	Implied by final a	inswer $\frac{x+5}{ax+b}$
	(x - 5) as 3rd factor of denominator	B1	Implied by final a	$\frac{cx+d}{x-5}$
	$\frac{\text{their } x + 5}{\text{their } x - 5}$	B1 ft	Do not award if f	urther work

17	CE or EB = $2x$ or DF = x or FC = $3x$ or area ABCD = $16x^2$	B1	May be on diagram or implied in working
	Area ABE = $\frac{1}{2}$ × their 2x × 4x (= 4x ²) and area CFE = $\frac{1}{2}$ × their 2x × their 3x (= 3x ²) and area ADF = $\frac{1}{2}$ × their x × 4x (= 2x ²)	M2	Attempt at all three triangle areas ABE and CFE and ADFM1 Attempt at any one triangle area ABE or CFE or ADFAll areas must be in terms of <i>x</i>
	$4x \times 4x$ - their $4x^2$ - their $3x^2$ - their $2x^2$ (= $7x^2$) 7	M1 Dep A1	Dep on at least M1 All areas must be in terms of x^2

Q	Answer	Mark	Comments
18	a = 3 and $b = -10$	В3	B2 $a = 3$ or $b = -10$ B1 $x^2 - 5x - 5x + 25$ oe

19	$(4-x)^2 = 4x + 5$	M1	
	$16 - 4x - 4x + x^2 = 4x + 5$	M1 Dep	Allow one error but must be a quadratic in x
	$x^2 - 12x + 11 (= 0)$	A1	oe Must be 3 terms
	(x-11)(x-1) (= 0)	M1	$\frac{12\pm\sqrt{(-12)^2-4(1)(11)}}{2} \text{or}$
			$(x-6)^2 - 36 + 11 = 0$ oe
	x = 11 and $x = 1$	A1 ft	Must have M3 to ft
			x = 11 and y = -7 or x = 1 and y = 3
	x = 11 and $y = -7$ and	A1	
	x = 1 and $y = 3$		

Alt 19	$y^2 = 4(4-y) + 5$	M1	
	$y^2 = 16 - 4y + 5$	M1 Dep	Allow one error but must be a quadratic in y
	$y^2 + 4y - 21$ (= 0)	A1	oe Must be 3 terms
	(y+7)(y-3) (= 0)	M1	$rac{-4\pm\sqrt{4^2-4(1)(-21)}}{2}$ or
			$(y+2)^2 - 4 - 21 = 0$ oe
	y = -7 and $y = 3$	A1 ft	Must have M3 to ft
			x = 11 and y = -7 or
			x = 1 and $y = 3$
	x = 11 and $y = -7$ and	A1	
	x = 1 and $y = 3$		

Q	Answer	Mark	Comments
20	$150 - 6x^{2}$ their $150 - 6x^{2} > 0$ or their $150 - 6x^{2} = 0$	B1 M1	their 150 – $6x^2$ must be in terms of x Must be > 0 or = 0
	$\frac{150}{6} > x^2 \text{ or } (6)(5-x)(5+x) (>0)$ or $\frac{150}{6} = x^2 \text{ or } (6)(5-x)(5+x) (=0)$	M1 Dep	ft Their inequality only if a quadratic either simplified to $k > x^2$ or factorised correctly or ft Their equation only if a quadratic
	-5 < <i>x</i> < 5	A1	either simplified to $k = x^2$ or factorised correctly Allow $x > -5$ and $x < 5$ (must have both inequalities as well as the 'and')

21	Fully correct method to eliminate a letter from <i>OB</i> and <i>AB</i>	M1	oe eg 1 $2y = 11(\frac{y}{2}) - 7$
	2(2x) = 11x - 7		eg 2 $2y - 4x = 0$
			2y - 11x = -7
			and $7x = 7$
	Coordinates of $B = (1, 2)$	A1	Implied by $x = 1$ and $y = 2$
	Fully correct method to eliminate a letter from <i>OA</i> and <i>AB</i>	M1	oe eg 1 $x + 3(\frac{11x-7}{2}) = 0$
	2y = 11(-3y) - 7		eg 2 $2x + 6y = 0$
			33x - 6y = 21
			and $35x = 21$
	Coordinates of $A = (0.6, -0.2)$	A1	oe Implied by $x = 0.6$ and $y = -0.2$
	OB^2 = their 1 ² + their 2 ²	M1	oe
	or		eg correct attempt at OB or AB
	$AB^{2} = (\text{their 1} - \text{their 0.6})^{2} + (\text{their 2} - \text{their } -0.2)^{2}$		ft Their <i>B</i> and/or their <i>A</i>
	$OB = \sqrt{5}$ and $AB = \sqrt{5}$	A1	ое
			eg $OB^2 = 5$ and $AB^2 = 5$

Q	Answer	Mark	Comments
22	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$	M1	
	$\begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix} \text{ or } \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \end{pmatrix} \text{ or }$	A1	oe
	Q (-4, -3)		
	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \text{their} \begin{pmatrix} -4 \\ -3 \end{pmatrix}$	M1 Dep	
	$\begin{pmatrix} -Y \\ -X \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$	A1 ft	oe ft Their $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ if M2 gained
	(3, 4)	A1 ft	ft Their $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ if M2 gained
			SC4 $\begin{pmatrix} 3\\4 \end{pmatrix}$
Alt 1 22	$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $	M1	This order only
	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	A1	
	Their $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$	M1 Dep	
	$\begin{pmatrix} -y \\ x \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$	A1 ft	oe ft Their $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ if M2 gained
	(3, 4)	A1 ft	ft Their $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ if M2 gained
			SC3 (-3, -4) SC4 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$

Q	Answer	Mark	Comments
Alt 2 22	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$	M1	
	$\begin{pmatrix} -y \\ -x \end{pmatrix}$	A1	
	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ their } \begin{pmatrix} -y \\ -x \end{pmatrix}$	M1 Dep	
	$\begin{pmatrix} -y \\ x \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$	A1 ft	oe ft Their $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ if M2 gained
	(3, 4)	A1 ft	ft Their $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ if M2 gained
			SC4 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
Alt 3	Attempt to reflect $(-4, 3)$ in the <i>x</i> -axis	M1	
22	(-4, -3)	A1	
	Attempt to reflect their (-4, -3) in the line $y = -x$	M1 Dep	
	(3, 4)	A2 ft	ft Their (-4, -3) if M2 gained
			SC4 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$

Q	Answer	Mark	Comments
	[
23	Trials values either side of $x = 0$	M1	oe
	$x = -1$ $\frac{dy}{dx} = 9$ and		Allow statements that $\frac{dy}{dx}$ is
	$x = 1 \qquad \frac{dy}{dx} = -1$		positive/negative but any evaluations seen must be correct
	Maximum (0, $\frac{4}{3}$)	A1	Can only be awarded with correct method seen
	Trials values either side of $x = 2$	M1	ое
	$x = 1$ $\frac{dy}{dx} = -1$		Allow statements that $\frac{dy}{dx}$ is negative but
	(may have been seen earlier)		any evaluations seen must be correct
	$x = 3$ $\frac{dy}{dx} = -3$		
	(Point of) inflection (2, 0)	A1	Can only be awarded with correct method seen
Alt 23	$\frac{d^2 y}{dx^2} = -3x^2 + 8x - 4$ and	M1	Second derivative must be correct
	.2		Allow statement that $\frac{d^2 y}{dx^2}$ is negative but if
	substitutes $x = 0$ and $\frac{d^2 y}{dx^2} = -4$		evaluation seen it must be correct
	Maximum (0, $\frac{4}{3}$)	A1	Can only be awarded with correct method seen
	Trials values either side of $x = 2$	M1	oe eg uses second and third derivatives
	$x = 1$ $\frac{dy}{dx} = -1$		Allow statements that $\frac{dy}{dx}$ is negative but
	$x = 3 \qquad \frac{dy}{dx} = -3$		any evaluations seen must be correct
	(Point of) inflection (2, 0)	A1	Can only be awarded with correct method seen