For **AQA**

Mathematics

Paper 3 (Calculator)

Higher Tier

Churchill Paper 3C – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Churchill Maths

Written by Shaun Armstrong

Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 3C Marking Guide – AQA Higher Tier

1	3x - 15 = 5x -15 = 2x $x = -15 \div 2 = -7.5$		
	-12.5 -7.5 -5 -2.5	B1	Total 1
2	-0.15 × 210 0.15 × 210 0.85 × 210 1.15 × 210	B1	Total 1
3	(4, 0) (2, 2) (-1, 4) (4, -4)	B1	Total 1
4	$(5 \times 10^{120}) \times (2 \times 10^{130}) = 5 \times 2 \times 10^{120} \times 10^{130}$ = 10 × 10 ²⁵⁰ = 10 ²⁵¹		
	10^{249} 10^{250} 10^{251} 10^{2500}	B1	Total 1
5	(a) $\sqrt[4]{11000} = 10.24$ (1.95) ² = 3.8025		
	$\sqrt[4]{11000} - (1.95)^2 = 10.24 3.8025 = 6.438$	M1	
	$\frac{\sqrt[4]{11000} - (1.95)^2}{0.493} = 6.438 \div 0.493 = 13.0601154$	A1	
	$(h) = \frac{4}{44000} \approx \frac{4}{40000} = 10$		
	(b) $\sqrt{11000} \approx \sqrt{10000} = 10$ $(1.95)^2 \approx 2^2 = 4$		
	$\sqrt[4]{11000} - (1.95)^2 \approx 10 - 4 = 6$	M1	
	$\frac{\sqrt{11000 - (1.95)^2}}{0.493} \approx 6 \div 0.5 = 12$		
	My answer to part (a) is sensible as 13.06 is close to 12	A1	Total 4
6	(a)	B2	
	(b)	B2	
			Total 4

7	Myra 3 po 1 po Nell	a got 6 – 3 = 3 portions more than Louise rtions = 12 cards rtion = 12 ÷ 3 = 4 cards got 7 portions = 7 × 4 = 28 cards	M1 M1 A1	Total 3
8	Speed = $\frac{\text{distance}}{\text{time}}$ so time = $\frac{\text{distance}}{\text{speed}}$ First bullet, time = $\frac{100}{200}$ = 0.5 seconds Second bullet, time = $\frac{100}{220}$ = 0.4545 seconds So, second bullet arrives after 0.5545 seconds Time gap = 0.5545 0.5 = 0.0545 = 0.055 seconds (3dp)			
	0.035 0.044 0.045 0.055		B1	Total 1
9	(a)	$\frac{1}{4}$	B1	
	(b)	e.g. On average they last a lot longer after practising as the median has increased from 15 to 24. The shortest time is roughly the same (4 up from 3) but the longest time has increased quite a bit (54 up from 42). That has increased the range but the interquartile range is similar to before being 18 up from 17. This means that the variation in how long they lasted is similar to before the practise. <i>[Valid comparison of median, IQR and one other.]</i>	В3	Total 4
10	(a)	Frame and mattress: $12 \times 8 = 96$ Frame and headboard: $12 \times 6 = 72$ Frame and footboard: $12 \times 3 = 36$ Total no. of ways = $96 + 72 + 36 = 204$	M1 M1 A1	
	(b)	Frame, mattress and headboard: $12 \times 8 \times 6 = 576$ Frame, mattress and footboard: $12 \times 8 \times 3 = 288$ Frame, headboard and footboard: $12 \times 6 \times 3 = 216$ Total no. of ways = $576 + 288 + 216 = 1080$ 17281080612576	B1	Total 4
11	20 4	1 5 11 19 29 4 6 8 10 12 14 16		
	29 + 41 + 55 +	14 = 55 16 = 71		
	38	57 59 71	B1	Total 1

12	(a)	$ = y(y^2 - 9) = y(y - 3)(y + 3) $	M1 A1	
	(b)	(z + 8)(z - 6) = 0 z = -8 or 6	M1 A1	Total 4
13	(a)	$\frac{2}{6}$ [= $\frac{1}{3}$]	B1	
	(b)	6 = 1 outcome (6) Even = 4 outcomes (4, 4, 4, 6) P (6 Even) = $\frac{1}{4}$	M1 A1	
	(c)	e.g. $\begin{array}{c c c c c c c c c c c c c c c c c c c $		
		<u>5</u> <u>36</u>	M1 A1	Total 5
14	(a)	Perpendicular height of one triangle = $\frac{1}{2} \times (20 - x)$ Area of one triangle = $\frac{1}{2} \times x \times \frac{1}{2}(20 - x)$ = $\frac{1}{4}x(20 - x)$ cm ² S.A. = area of square base + 4 × area of one triangle = $x^2 + 4 \times \frac{1}{4}x(20 - x)$ = $x^2 + x(20 - x)$ = $x^2 + 20x - x^2$ = $20x$ cm ²	M1 M1 A1	
	(b)	Area of base = 8^2 = 64 cm ² Perpendicular height of triangle = $\frac{1}{2}(20 - 8) = 6$ cm Let perpendicular height of pyramid = <i>h</i> cm Pythagoras': $h^2 = 6^2 - 4^2$ $= 36 - 16 = 20$ $\frac{1}{2} \times 8 = 4$	M1	
		$h = \sqrt{20}$ Volume of pyramid = $\frac{1}{3} \times 64 \times \sqrt{20}$ = 95.4 cm ³ (3sf) [or $\frac{128}{3} \sqrt{5}$]	M1 A1	Total 6

4

2017 AH3C Marks Page 5

(-4, 0), (-0.5, 0) and (0, -1)

© Churchill Maths Limited Licensed to Sir Thomas Fremantle School

M1 A1 Total 5

19 (a) Each burger weighs $500 \div 4 = 125g$						
		Density = $\frac{\text{mass}}{\text{volume}}$				
		$1.1 = \frac{125}{1}$	M1			
		volume 125				
		volume = $\frac{120}{1.1}$ = 113.6 cm ³	A1			
	Volume of cylinder = $\pi r^2 h$					
		113.6 = $\pi \times 4^2 \times h$	M1			
		$h = \frac{113.6}{113.6} = 2.2607 = 2.3 \text{ cm} (100)$	A1			
		16π				
	(b)	New volume = 70% of original volume	5.4			
		70% = 0.7 so Volume scale factor = 0.7	B1			
		Area scale factor = $(0.8879)^2 = 0.7883$	M1			
		0.7883 = 78.83%	Δ1	Total 7		
		/icurculocu by roo / 70.00 21.10 21.270 (001)	//1			
20	(radi So ir $(-2)^2$ $0^2 + 2^2 + 3^2 + 3^2 + 3^2$	$\begin{aligned} \text{us}^2 &= 15 \\ \text{nside the circle, [distance from (0, 0)]^2 will be less than 15} \\ + 4^2 &= 4 + 16 &= 20 > 15 \\ (-5)^2 &= 0 + 25 &= 25 > 15 \\ (-3)^2 &= 4 + 9 &= 13 < 15 \\ 3^2 &= 9 + 9 &= 18 > 15 \end{aligned}$				
	(–2,	4) $(0, -5)$ $(2, -3)$ $(3, 3)$	B1	Total 1		
21	Alternate segment theorem \rightarrow angle QPR = angle QRV = 64° As PQ = PR triangle PQR is isosceles so		B1			
	Angle $PRQ = \frac{1}{2}(180 - 64) = \frac{1}{2} \times 116 = 58^{\circ}$					
	Angles on a straight line total 180° so					
	Angle <i>PRU</i> = 180 – (58 + 64) = 180 – 122 = 58°		A1	Total 3		
22	Let angle $POQ = a$ Considering the triangle with corners at O, P and R (3, 0) gives:					
	$\tan a = \frac{1}{OR} = \frac{1}{3}$		IVI I			
	$a = \tan^{-1} \frac{4}{3} = 53.130^{\circ}$		A1			
	Area sector OPQ = $\frac{53.13}{260} \times \pi \times 5^2$					
		= 11.591				
	Area triangle $OPQ = \frac{1}{2} \times 5 \times 4 = 10$					
	Area segment = 11.591 – 10 = 1.591 = 1.59 (3sf)			Total 5		

23	Gradient of $y = 2x$ is 2				
	<i>PQ</i> is perpendicular so g	radient = $\frac{-1}{(2)} = -\frac{1}{2}$	M1		
	Equation of PQ:	$y = -\frac{1}{2}x + c$			
		$4 = (-\frac{1}{2} \times -3) + c$	M1		
		$c = 4 - \frac{3}{2} = \frac{5}{2}$			
		$y = -\frac{1}{2}x + \frac{5}{2}$			
	Midpoint of PQ will be intersection, so:				
		$2x = -\frac{1}{2}x + \frac{5}{2}$	M1		
		$\frac{5}{2}x = \frac{5}{2}$			
		<i>x</i> = 1	A1		
	When $x = 1$, $y = 2 \times 1 = 2$ so midpoint of PQ is (1, 2)				
	If Q is (x, y) then	$(1, 2) = \left(\frac{-3+x}{2}, \frac{4+y}{2}\right)$			
	Hence $x = 2 \times$ Q is (5, 0)	$1 + 3 = 5$ and $y = 2 \times 2 - 4 = 0$	M1 A1	Total 6	
	4.0 (0, 0)				

TOTAL FOR PAPER: 80 MARKS