Mathematics

 Paper 3 (Calculator)

 Paper 3 (Calculator)}

Higher Tier

Churchill Paper 3C - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 3C Marking Guide - AQA Higher Tier

$13 x-15=5 x$
$-15=2 x$
$x=-15 \div 2=-7.5$
-12.5 $-7.5 \quad-5 \quad-2.5$

Total 1
$2-0.15 \times 210$
0.15×210
0.85×210
1.15×210
B1 Total 1
$3(4,0)$
$(2,2)$
$(-1,4)$
$(4,-4)$
B1 Total 1
$4 \quad\left(5 \times 10^{120}\right) \times\left(2 \times 10^{130}\right)=5 \times 2 \times 10^{120} \times 10^{130}$
$=10 \times 10^{250}$
10^{249} 10^{250}

10^{2500}
B1 Total 1

5 (a) $\sqrt[4]{11000}=10.24 \ldots$

$$
\begin{aligned}
& (1.95)^{2}=3.8025 \\
& \sqrt[4]{11000}-(1.95)^{2}=10.24 \ldots-3.8025=6.438 \ldots \\
& \frac{\sqrt[4]{11000}-(1.95)^{2}}{0.493}=6.438 \ldots \div 0.493=13.0601154
\end{aligned}
$$

M1
A1
(b) $\sqrt[4]{11000} \approx \sqrt[4]{10000}=10$

$$
\begin{aligned}
& (1.95)^{2} \approx 2^{2}=4 \\
& \sqrt[4]{11000}-(1.95)^{2} \approx 10-4=6 \\
& \frac{\sqrt[4]{11000}-(1.95)^{2}}{0.493} \approx 6 \div 0.5=12
\end{aligned}
$$

My answer to part (a) is sensible as $13.06 \ldots$ is close to 12

6 (a)

B2

B2

7 Myra got 6-3=3 portions more than Louise
3 portions $=12$ cards M1
1 portion $=12 \div 3=4$ cards M1
Nell got 7 portions $=7 \times 4=28$ cards A1
Total 3

8 Speed $=\frac{\text { distance }}{\text { time }}$ so time $=\frac{\text { distance }}{\text { speed }}$
First bullet, time $=\frac{100}{200}=0.5$ seconds
Second bullet, time $=\frac{100}{220}=0.4545 \ldots$ seconds
So, second bullet arrives after 0.5545 ... seconds
Time gap $=0.5545 \ldots-0.5=0.0545 \ldots=0.055$ seconds (3dp)
0.0350 .0440 .045 B1 0.055 Total 1
$\begin{array}{ll}9 & \text { (a) } \frac{1}{4}\end{array}$
(b) e.g. On average they last a lot longer after practising as the median has increased from 15 to 24 . The shortest time is roughly the same (4 up from 3) but the longest time has increased quite a bit (54 up from 42). That has increased the range but the interquartile range is similar to before being 18 up from 17. This means that the variation in how long they lasted is similar to before the practise.
[Valid comparison of median, IQR and one other.]
Total 4

10 (a) Frame and mattress: $12 \times 8=96$
Frame and headboard: $12 \times 6=72$ M1
Frame and footboard: $12 \times 3=36$
Total no. of ways $=96+72+36=204$ M1 A1
(b) Frame, mattress and headboard: $12 \times 8 \times 6=576$

Frame, mattress and footboard: $12 \times 8 \times 3=288$
Frame, headboard and footboard: $12 \times 6 \times 3=216$
Total no. of ways $=576+288+216=1080$

1728 1080 612 B1 | Total 4 |
| :--- |

$\begin{array}{llllllllll}11 & 1 & 5 & & 11 & 19 & & \\ & & 4 & 6 & 8 & 10 & 12 & 14 & 16\end{array}$
$29+12=41$
$41+14=55$
$55+16=71$
38 57 59

B1 Total 1

12
(a) $=y\left(y^{2}-9\right)$
$=y(y-3)(y+3)$
(b) $(z+8)(z-6)=0$

13
(a) $\frac{2}{6} \quad\left[=\frac{1}{3}\right]$
(b) $6=1$ outcome (6)

Even $=4$ outcomes (4, 4, 4, 6)
$P(6 \mid$ Even $)=\frac{1}{4}$
(c) e.g.

$\mathrm{B} \downarrow \mathrm{A} \rightarrow$	1	1	2	3	3	4
1			\checkmark	ι	$\boldsymbol{\nu}$	$\boldsymbol{\iota}$
3						$\boldsymbol{\iota}$
4						
4						
4						
6						

$$
\frac{5}{36}
$$

M1 A1 Total 5

14 (a) Perpendicular height of one triangle $=\frac{1}{2} \times(20-x)$
Area of one triangle $=\frac{1}{2} \times x \times \frac{1}{2}(20-x)$

$$
=\frac{1}{4} x(20-x) \mathrm{cm}^{2}
$$

S.A. $=$ area of square base $+4 \times$ area of one triangle

$$
\begin{aligned}
& =x^{2}+4 \times \frac{1}{4} x(20-x) \\
& =x^{2}+x(20-x) \\
& =x^{2}+20 x-x^{2} \\
& =20 x \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Area of base $=8^{2}=64 \mathrm{~cm}^{2}$

Perpendicular height of triangle $=\frac{1}{2}(20-8)=6 \mathrm{~cm}$
Let perpendicular height of pyramid $=h \mathrm{~cm}$
Pythagoras': $\quad h^{2}=6^{2}-4^{2}$

$$
\begin{aligned}
& =36-16=20 \\
h & =\sqrt{20}
\end{aligned}
$$

Volume of pyramid $=\frac{1}{3} \times 64 \times \sqrt{20}$

$$
=95.4 \mathrm{~cm}^{3}(3 \mathrm{sf}) \quad\left[\text { or } \frac{128}{3} \sqrt{5}\right]
$$

A1
Total 6
$15 \quad 2 x^{2}+x-3=(2 x+3)(x-1)$

$$
\begin{aligned}
\frac{2 x^{2}+x-3}{x^{2}-x} \div \frac{x-5}{x^{2}-5 x} & =\frac{(2 x+3)(x-1)}{x(x-1)} \div \frac{x-5}{x(x-5)} \\
& =\frac{(2 x+3)}{x} \div \frac{1}{x} \\
& =\frac{(2 x+3)}{x} \times \frac{x}{1} \\
& =\frac{x(2 x+3)}{x} \\
& =2 x+3
\end{aligned}
$$

16 (a) $x=-2$ or 1.5
(b)

$(-3,0),(2,0)$ and $(0,2)$
(c)

$(-4,0),(-0.5,0)$ and $(0,-1)$
$17 \quad$ (a) $y \propto \frac{1}{x}$
$y=\frac{k}{x}$

$$
\begin{array}{ll}
\text { When } x=5, y=0.5 \text { so } \quad 0.5=\frac{k}{5} \\
& k=5 \times 0.5=2.5
\end{array}
$$

Hence, $y=\frac{2.5}{x}$
When $x=20$

$$
\begin{array}{ll}
y=\frac{2.5}{20} & \text { M1 } \\
y=\frac{1}{8} \text { or } 0.125 & \text { A1 }
\end{array}
$$

(b) The value of p is divided by $4 \quad$ [or multiplied by $\frac{1}{4}$]

$$
\left[p=\frac{k}{q^{2}}, \text { when } q \rightarrow 2 q, p=\frac{k}{(2 q)^{2}}=\frac{k}{4 q^{2}}=\frac{1}{4} \times \frac{k}{q^{2}}\right]
$$

18 (a) $x=1$
(b) $x \approx-1.6, x \approx 3.6$
(c) e.g. For $x+2 y=4$:

When $x=0, y=2$ When $y=0, x=4$

$$
\begin{aligned}
\text { From graph: } & x \approx-1.5, y \approx 2.8 \\
& x \approx 4, y \approx 0
\end{aligned}
$$

19 (a) Each burger weighs $500 \div 4=125 \mathrm{~g}$
Density $=\frac{\text { mass }}{\text { volume }}$

$$
\begin{array}{ll}
1.1=\frac{125}{\text { volume }} & \text { M1 } \\
\text { volume }=\frac{125}{1.1}=113.6 \ldots \mathrm{~cm}^{3} & \mathrm{~A} 1
\end{array}
$$

Volume of cylinder $=\pi r^{2} h$
radius of burger $=8 \div 2=4 \mathrm{~cm}$
$113.6=\pi \times 4^{2} \times h$
M1

$$
h=\frac{113.6 \ldots}{16 \pi}=2.2607 \ldots=2.3 \mathrm{~cm}(1 \mathrm{dp}) \quad \text { A1 }
$$

(b) New volume $=70 \%$ of original volume
$70 \%=0.7$ so Volume scale factor $=0.7$
$0.7883=78.83 \%$
Area reduced by $100-78.83 \ldots=21.16 \ldots=21.2 \%(3 \mathrm{sf}) \quad$ A1
$20 \quad$ (radius) $^{2}=15$
So inside the circle, [distance from $(0,0)]^{2}$ will be less than 15
$(-2)^{2}+4^{2}=4+16=20>15$
$0^{2}+(-5)^{2}=0+25=25>15$
$2^{2}+(-3)^{2}=4+9=13<15$
$3^{2}+3^{2}=9+9=18>15$
$(-2,4) \quad(0,-5) \quad(2,-3) \quad$ B1 $\quad(3,3) \quad$ Total 1

21 Alternate segment theorem \rightarrow angle $Q P R=$ angle $Q R V=64^{\circ}$
As $P Q=P R$, triangle $P Q R$ is isosceles so

$$
\text { Angle } P R Q=\frac{1}{2}(180-64)=\frac{1}{2} \times 116=58^{\circ} \quad M 1
$$

Angles on a straight line total 180° so
Angle $P R U=180-(58+64)=180-122=58^{\circ} \quad$ A1
Total 3

22 Let angle $P O Q=a$
Considering the triangle with corners at O, P and $R(3,0)$ gives:
$\tan a=\frac{P R}{O R}=\frac{4}{3}$
$a=\tan ^{-1} \frac{4}{3}=53.130 \ldots{ }^{\circ}$
Area sector $O P Q=\frac{53.13}{360} \times \pi \times 5^{2}$
= 11.591...

Area triangle $O P Q=\frac{1}{2} \times 5 \times 4=10 \quad B 1$
Area segment $=11.591 \ldots-10=1.591 \ldots=1.59$ (3sf)

23 Gradient of $y=2 x$ is 2
$P Q$ is perpendicular so gradient $=\frac{-1}{(2)}=-\frac{1}{2}$
Equation of $P Q$:

$$
\begin{aligned}
& y=-\frac{1}{2} x+c \\
& 4=\left(-\frac{1}{2} \times-3\right)+c \\
& c=4-\frac{3}{2}=\frac{5}{2} \\
& y=-\frac{1}{2} x+\frac{5}{2}
\end{aligned}
$$

M1

Midpoint of $P Q$ will be intersection, so:

$2 x=-\frac{1}{2} x+\frac{5}{2}$	M1
$\frac{5}{2} x=\frac{5}{2}$	
$x=1$	A1

When $x=1, y=2 \times 1=2$ so midpoint of $P Q$ is $(1,2)$
If Q is (x, y) then

$$
(1,2)=\left(\frac{-3+x}{2}, \frac{4+y}{2}\right)
$$

Hence $\quad x=2 \times 1+3=5$ and $y=2 \times 2-4=0$ M1
Q is $(5,0)$

