For \mathbf{AQA}

Mathematics

Paper 3 (Calculator)

Higher Tier

Churchill Paper 3A – Marking Guide

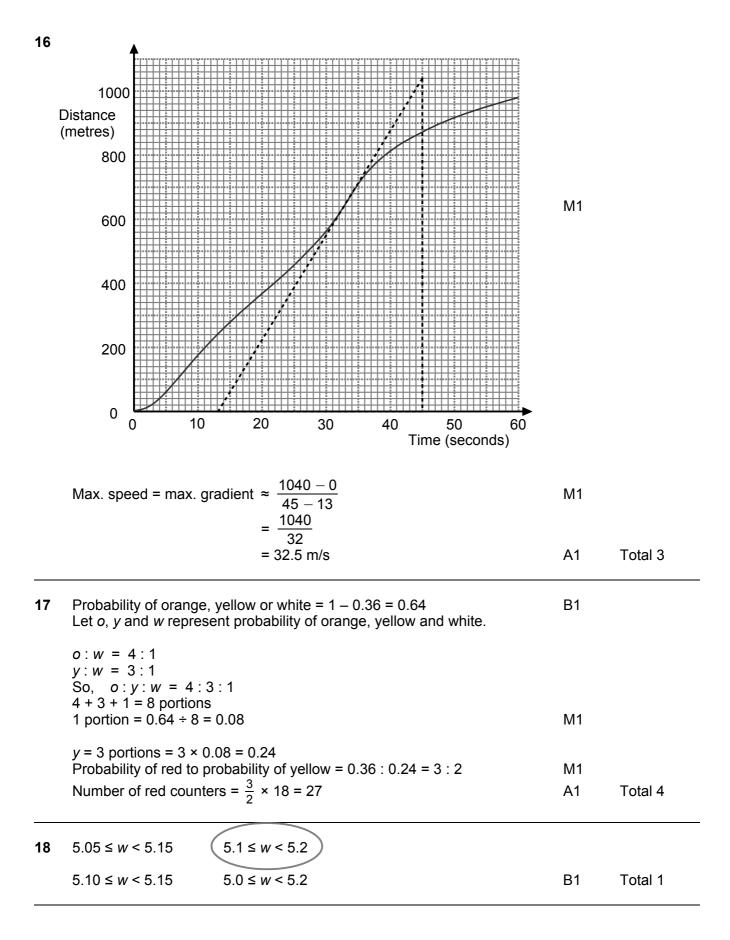
Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Churchill Maths

Written by Shaun Armstrong

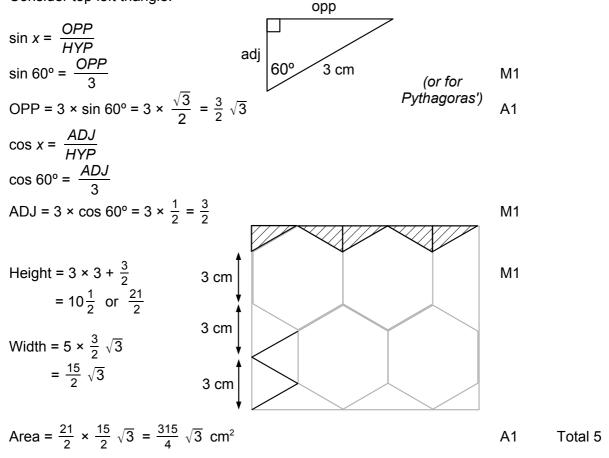

Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 3A Marking Guide – AQA Higher Tier

1	(3.08	$\frac{7.8)^2}{5+6.92} \approx \frac{8^2}{3+7} = \frac{64}{10} = 6.4$		
	0.64	6.084 6.4 28.3	B1	Total 1
2	Radi Area	the of circle = πr^2 thus = $8 \div 2 = 4$ the of circle = $\pi \times 4^2 = 16\pi$ the of semicircle = $\frac{1}{2} \times 16\pi = 8\pi$		
	4π	8π 16π 32π	B1	Total 1
3	$\frac{1}{2} =$	= 0.7071 = 0.5, $\frac{5}{7} = 0.7142, \frac{7}{10} = 0.7, \frac{12}{17} = 0.7058$ est is 0.7058		
	<u>1</u> 2	$\frac{5}{7}$ $\frac{7}{10}$ $\frac{12}{17}$	B1	Total 1
4	(x +	(x-3)(x-3) (x-3) (x+1)(x-9) x(x-9)	B1	Total 1
5	(a)	$= 2 \times \pounds7.80 + 3 \times \pounds6.00$ = 15.60 + 18.00 = £33.60	M1 A1	
	(b)	Instead of spending £33.60 each week he spends £25.50 Saving per week = $33.60 - 25.50 = £8.10$ Saving per year = $46 \times £8.10 = £372.60$ Yes, Martin is correct	M1 M1 A1	Total 5
6	(a)	B and D	B1	
	(b)	p = 4, q = -5	B2	
	(c)	2	B1	
	(d)	<i>x</i> = 1	B1	Total 5

7	(a) Let inpu 5(x + 3) 5x + 15 2x = -19	M1				
	x = -7.5	5 The input was –7.5	A1			
	Ŷ.	wrong the first input is 2, the first output is 25 and the second utput is 140 which doesn't end in a 5	B1	Total 3		
8	So, 1	workers check 120 phones in 6 hours worker checks 60 phones in 6 hours worker checks 10 phones in 1 hour	M1			
	Hence, 5	workers check 50 phones in 1 hour				
	400 ÷ 50 = 8					
	So, 5	workers check 400 phones in 8 hours	A1			
	It takes them	8 hours		Total 2		
9	Area of triang	jular XS = $\frac{1}{2} \times 9p \times 2p = 9p^2$				
	Volume of pris	M1				
		Let length of edge of cube be x Volume of cube = $x^3 = 27p^3$				
		be = $x^3 = 27p^3$	M1 A1	Total 3		
10	Volume of cul $x = \sqrt[3]{27 p^3} =$ (a) Fraction	be = $x^3 = 27p^3$ $\sqrt[3]{27}p = 3p$ the at primary with no siblings = $\frac{90}{240} = \frac{3}{8}$	M1 A1	Total 3		
10	Volume of cul $x = \sqrt[3]{27 p^3} =$ (a) Fraction	be = $x^3 = 27p^3$ $\sqrt[3]{27}p = 3p$	M1 A1 M1 A1	Total 3		
10	Volume of cult $x = \sqrt[3]{27 p^3} =$ (a) Fraction Estimate (b) e.g. It Pr ar sc	be = $x^3 = 27p^3$ $\sqrt[3]{27}p = 3p$ In at primary with no siblings = $\frac{90}{240} = \frac{3}{8}$ re for secondary = $\frac{3}{8} \times 960 = 360$ is likely to be an overestimate. rimary school pupils are young and those that don't have hy siblings now may do by the time they are at secondary chool. So the fraction without siblings is likely to be lower	M1 A1			
10	Volume of cult $x = \sqrt[3]{27 p^3} =$ (a) Fraction Estimate (b) e.g. It Pr ar sc	be = $x^3 = 27p^3$ $\sqrt[3]{27}p = 3p^3$ In at primary with no siblings = $\frac{90}{240} = \frac{3}{8}$ the for secondary = $\frac{3}{8} \times 960 = 360$ is likely to be an overestimate. rimary school pupils are young and those that don't have ny siblings now may do by the time they are at secondary		Total 3 Total 4		
 10 11	Volume of cult $x = \sqrt[3]{27 p^3} =$ (a) Fraction Estimate (b) e.g. It Prain ar so at	be = $x^3 = 27p^3$ $\sqrt[3]{27}p = 3p$ In at primary with no siblings = $\frac{90}{240} = \frac{3}{8}$ re for secondary = $\frac{3}{8} \times 960 = 360$ is likely to be an overestimate. rimary school pupils are young and those that don't have hy siblings now may do by the time they are at secondary chool. So the fraction without siblings is likely to be lower	M1 A1			

12	g : b	to. of girls be <i>g</i> and no. c = 5 : 4 so $b = \frac{4}{5}g$ (1)	B1		
	g = Ł Sub	o + 3 (2) (1) into (2) gives	$g = \frac{4}{5}g + 3$ $\frac{1}{5}g = 3$	M1	
		Λ	<i>g</i> = 15		
		ce $b = \frac{4}{5} \times 15 = 12$ I of girls and boys = 15 +	12 = 27	A1	Total 3
13	(a)	$P \propto Q$ P = kQ			
		When $Q = 6$, $P = 15$ so	15 = <i>k</i> × 6 <i>k</i> = 15 ÷ 6 = 2.5	M1	
		P = 2.5Q			
		When <i>Q</i> = 3.5	<i>P</i> = 2.5 × 3.5 = 8.75	M1 A1	
	(b)	When <i>x</i> is multiplied by So <i>y</i> is inversely proportion	2, y is divided by 4 which is 2^2 tional to x^2		
		y is directly proportiona	I to \sqrt{x} y is directly proportional to x^2		
		y is inversely proportior	to x y is inversely proportional to x^2	B1	Total 4
14	Let the outward journey be <i>x</i> km and take <i>t</i> hours Distance = speed × time				
	So,		x = 50t (1)	B1	
			= x + 23, av. speed = 56, time = $t + \frac{1}{4}$		
	So,		$x + 23 = 56(t + \frac{1}{4}) $ (2) 50t + 23 = 56t + 14	M1	
	Sub	for <i>x</i> from (1):	M1		
		vard journey took 1.5 hou rn journey took 15 minut	A1	Total 4	
15	Let short edge of rectangle be x cm long The long edge fits with 2 short edges so is $2x$ cm long The area (of one side) of a piece is $2x \times x = 2x^2$ cm ²				
	Ther So,	e are 2 × 8 = 16 pieces s $2x^2 = 18$ $x^2 = 9$	M1		
		x = 3 [can't be –3 as	s it's a length]		
		ensions of cuboid = 9 cm me of cuboid = $9 \times 6 \times 6$	M1 A1	Total 4	


$5 \rightarrow y = \frac{1}{3}x + 2$ so gradient $= \frac{1}{3}$ $3 \rightarrow y = \frac{1}{3}x - 1$ so gradient $= \frac{1}{3}$	M1	
5 5		
have the same gradient so are parallel		
	A1	
$x \rightarrow y = 1 - \frac{1}{2}x$ so gradient = $-\frac{1}{2}$	M1	
of gradients = $-2 \times -\frac{1}{2} = 1$	M1	
not –1 the lines are not perpendicular		
	A1	
pets x-axis when $y = 0$		
$0 = x^2 - 6x + 9$		
	M1	
	A1	Total 7
-3/2 - 14422		
$-\sqrt{-3}$ -1.4422		
$\overline{422)} - \overline{7} = \sqrt[3]{-12.7689} = -2.3373$		
-9.787 -1.442	B1	Total 1
388		
3		
x = 3.888888 0.3888888	M1	
= 3.8 - 0.3 = 3.5		
$=\frac{3.5}{9}=\frac{7}{18}$	A1	
$\dot{8} = \frac{7}{18}$		Total 2
ase is by 20% of the original number. You now have a		
mber so the decrease is by 20% of a bigger number.		
	$0 = (x - 3)^{2}$ $x = 3$ only one solution so they meet at exactly one point $\overline{7} = \sqrt[3]{-3} = -1.4422$ $\overline{1422} - 7 = \sqrt[3]{-12.7689} = -2.3373$ $-9.787 \qquad -2.337 \qquad -1.442$ $\overline{388}$ $x = 3.8888888 0.3888888$	$x \rightarrow y = 1 - \frac{1}{2}x \text{ so gradient} = -\frac{1}{2}$ M1 of gradients = $-2 \times -\frac{1}{2} = 1$ M1 not -1 the lines are not perpendicular A1 eets x-axis when $y = 0$ $0 = x^2 - 6x + 9$ $0 = (x - 3)^2$ M1 x = 3 only one solution so they meet at exactly one point A1 $\overline{x} = \sqrt[3]{-3} = -1.4422$ $\overline{4422} - 7 = \sqrt[3]{-12.7689} = -2.3373$ -9.787 -2.337 -1.442 B1 $\overline{388}$ 3 x = 3.888888 0.3888888 M1 = 3.8 - 0.3 = 3.5 $= \frac{3.5}{9} = \frac{7}{18}$ A1 $\dot{8} = \frac{7}{18}$ Ease is by 20% of the original number. You now have a unber so the decrease is by 20% of a bigger number.

55	,	00	
That means the decrease is larg	ger than the	increase so you de	on't
get back to the original number.	-	-	B2

Total 2

23	58.0 57.4 57.2 So 2	mes are represented by the area above 57.2 to 59.0 area = $20 \times 4 = 80$ small squares to 58.0 area = $12 \times 15 = 180$ small squares to 57.4 area = $4 \times 65 = 260$ small squares 66 times are represented by $80 + 180 + 260 = 520$ small squares refore 1 time is represented by $520 \div 26 = 20$ small squares	M1		
	56.0 60 s Estir	M1 A1	Total 3		
24	(a)	$= 0.18 \times 0.18 = 0.0324$	M1 A1		
	(b)	= 1 – P(no post over 4 days) = 1 – $(0.18)^4$ = 1 – 0.00104	M1		
		= 0.9989 = 0.999 (3sf)	A1	Total 4	

25 External angle of regular hexagon = 360 ÷ 6 = 60° Consider top left triangle:

26 (a) Quad. sequence so second differences constant:

		13		19	k	37
_			-	2	2	

Hence first differences are:

		9 13 19 <i>k</i> 37 2 4 6 8 10 2 2 2 2	M1	
	<i>k</i> = 19 + 8 = 27		A1	
(b)	Let <i>n</i> th term = <i>a</i> We have	n ² + bn + c a + b + c = 7 3a + b = 2 2a = 2		
	Hence, <i>a</i> = 1		B1	
	So	$(3 \times 1) + b = 2$ b = 2 - 3 = -1	M1	
	And	1 + (-1) + c = 7		
		c = 7	M1	
	<i>n</i> th term = $n^2 - r$	ז + 7	A1	Total 6

TOTAL FOR PAPER: 80 MARKS