Mathematics

 Paper 3 (Calculator)

 Paper 3 (Calculator)}

Higher Tier

Churchill Paper 3A - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence
$1 \quad \frac{(7.8)^{2}}{3.05+6.92} \approx \frac{8^{2}}{3+7}=\frac{64}{10}=6.4$
0.64
6.084
6.4
28.3
B1 Total 1

2 Area of circle $=\pi r^{2}$
Radius $=8 \div 2=4$
Area of circle $=\pi \times 4^{2}=16 \pi$
Area of semicircle $=\frac{1}{2} \times 16 \pi=8 \pi$
4π
 16π 32π

B1
Total 1
$3 \quad \frac{1}{\sqrt{2}}=0.7071 \ldots$
$\frac{1}{2}=0.5, \quad \frac{5}{7}=0.7142 \ldots, \quad \frac{7}{10}=0.7, \quad \frac{12}{17}=0.7058 \ldots$
Closest is 0.7058 ...
B1 Total 1

4

5
(a) $=2 \times £ 7.80+3 \times £ 6.00$
M1

$$
\begin{aligned}
& =15.60+18.00 \\
& =£ 33.60
\end{aligned}
$$

(b) Instead of spending $£ 33.60$ each week he spends $£ 25.50$

Saving per week $=33.60-25.50=£ 8.10$
M1
Saving per year $=46 \times £ 8.10=£ 372.60$
M1
Yes, Martin is correct
A1
Total 5

6
(a) B and D
B1
(b) $p=4, q=-5$
B2
(c) 2
B1
(d) $x=1$
B1

Total 5
(a) Let input $=x$

$5(x+3)=3 x$		M1
$5 x+15=3 x$		
$2 x=-15$		A1
$x=-7.5$	The input was -7.5	A

(b) Rosa is wrong
e.g. If the first input is 2 , the first output is 25 and the second output is 140 which doesn't end in a 5

B1 Total 3

8 We have: 2 workers check 120 phones in 6 hours
So, $\quad 1$ worker checks 60 phones in 6 hours
1 worker checks 10 phones in 1 hour
M1
Hence, 5 workers check 50 phones in 1 hour
$400 \div 50=8$
So, $\quad 5$ workers check 400 phones in 8 hours
A1
It takes them 8 hours
Total 2

9 Area of triangular XS $=\frac{1}{2} \times 9 p \times 2 p=9 p^{2}$
Volume of prism $=9 p^{2} \times 3 p=27 p^{3}$
Let length of edge of cube be x
Volume of cube $=x^{3}=27 p^{3}$
$x=\sqrt[3]{27 p^{3}}=\sqrt[3]{27} p=3 p$
M1 A1 Total 3

10 (a) Fraction at primary with no siblings $=\frac{90}{240}=\frac{3}{8}$
Estimate for secondary $=\frac{3}{8} \times 960=360$
M1 A1
(b) e.g. It is likely to be an overestimate.

Primary school pupils are young and those that don't have any siblings now may do by the time they are at secondary school. So the fraction without siblings is likely to be lower at the secondary school.

B2
Total 4

11 Multiplying constant terms $=1 \times-1 \times 4=-4$
-5

$\begin{array}{ll}2 & 7\end{array}$
B1 Total 1

12 Let no. of girls be g and no. of boys be b
$g: b=5: 4$ so $b=\frac{4}{5} g$ (1)
$g=b+3$
Sub (1) into (2) gives

$$
\begin{aligned}
& g=\frac{4}{5} g+3 \\
& \frac{1}{5} g=3 \\
& g=15
\end{aligned}
$$

Hence $b=\frac{4}{5} \times 15=12$
Total of girls and boys $=15+12=27$

13 (a) $P \propto Q$
$P=k Q$
When $Q=6, P=15$ so $15=k \times 6 \quad$ M1
$P=2.5 Q$
When $Q=3.5 \quad P=2.5 \times 3.5=8.75$
M1 A1
(b) When x is multiplied by $2, y$ is divided by 4 which is 2^{2}

So y is inversely proportional to x^{2}
y is directly proportional to $\sqrt{x} \quad y$ is directly proportional to x^{2}
y is inversely proportional to x

14 Let the outward journey be $x \mathrm{~km}$ and take t hours
Distance $=$ speed \times time
So,
$x=50 t$
B1
For return journey: distance $=x+23$, av. speed $=56$, time $=t+\frac{1}{4}$
So,

$$
\begin{equation*}
x+23=56\left(t+\frac{1}{4}\right) \tag{2}
\end{equation*}
$$

M1
Sub for x from (1):
$50 t+23=56 t+14$ M1
$9=6 t$
$t=1.5$
Outward journey took 1.5 hours = 1 hour 30 minutes
Return journey took 15 minutes more so 1 hour 45 minutes
A1 Total 4

15 Let short edge of rectangle be $x \mathrm{~cm}$ long
The long edge fits with 2 short edges so is $2 x \mathrm{~cm}$ long
The area (of one side) of a piece is $2 x \times x=2 x^{2} \mathrm{~cm}^{2}$
There are $2 \times 8=16$ pieces so area (of one side) is $288 \div 16=18 \mathrm{~cm}^{2}$
$\begin{array}{ll}\text { So, } & 2 x^{2}=18 \\ & x^{2}=9 \\ & x=3 \text { [can't be }-3 \text { as it's a length] }\end{array}$
Dimensions of cuboid $=9 \mathrm{~cm}$ by 6 cm by 6 cm
M1
Volume of cuboid $=9 \times 6 \times 6=324 \mathrm{~cm}^{3}$
A1
Total 4

16

$$
\begin{aligned}
\text { Max. speed }=\text { max. gradient } & \approx \frac{1040-0}{45-13} \\
& =\frac{1040}{32} \\
& =32.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

17 Probability of orange, yellow or white $=1-0.36=0.64$
Let o, y and w represent probability of orange, yellow and white.
$o: w=4: 1$
$y: w=3: 1$
So, $o: y: w=4: 3: 1$
$4+3+1=8$ portions
1 portion $=0.64 \div 8=0.08$
$y=3$ portions $=3 \times 0.08=0.24$
Probability of red to probability of yellow $=0.36: 0.24=3: 2$
Number of red counters $=\frac{3}{2} \times 18=27$
Total 4
$185.05 \leq w<5.15$
$5.1 \leq w<5.2$
$5.0 \leq w<5.2$

B1
Total 1
(a) $3 y=x+6 \rightarrow y=\frac{1}{3} x+2$ so gradient $=\frac{1}{3}$
$3 y=x-3 \rightarrow y=\frac{1}{3} x-1$ so gradient $=\frac{1}{3}$
The lines have the same gradient so are parallel TRUE A1
(b) $y=5-2 x$ has gradient $=-2$
$2 y=2-x \rightarrow y=1-\frac{1}{2} x$ so gradient $=-\frac{1}{2}$
Product of gradients $=-2 \times-\frac{1}{2}=1$ M1
As this is not -1 the lines are not perpendicular FALSE
(c) Curve meets x-axis when $y=0$

So, $\quad 0=x^{2}-6 x+9$

$$
0=(x-3)^{2} \quad \text { M1 }
$$

There is only one solution so they meet at exactly one point TRUE
$20 x_{2}=\sqrt[3]{4 \times 1-7}=\sqrt[3]{-3}=-1.4422 \ldots$
$x_{3}=\sqrt[3]{4 \times(-1.4422 \ldots)-7}=\sqrt[3]{-12.7689 \ldots}=-2.3373 \ldots$
$-15.592-2.787 \quad-1.442 \quad$ B1 \quad Total 1

21 Let $x=0.3888888 \ldots$
$10 x=3.888888$...
So

$$
\begin{array}{lll}
10 x-x & =3.888888 \ldots-0.3888888 & \\
9 x & =3.8-0.3=3.5 & \text { M1 } \\
x & =\frac{3.5}{9}=\frac{7}{18} & \text { A1 }
\end{array}
$$

Therefore $0.3 \dot{8}=\frac{7}{18}$
Total 2

22 Yes
e.g. The increase is by 20% of the original number. You now have a bigger number so the decrease is by 20% of a bigger number. That means the decrease is larger than the increase so you don't get back to the original number.

2326 times are represented by the area above 57.2
58.0 to 59.0 area $=20 \times 4=80$ small squares
57.4 to 58.0 area $=12 \times 15=180$ small squares
57.2 to 57.4 area $=4 \times 65=260$ small squares

So 26 times are represented by $80+180+260=520$ small squares
Therefore 1 time is represented by $520 \div 26=20$ small squares
56.0 to 56.6 area $=12 \times 5=60$ small squares

60 small squares represents $60 \div 20=3$ times
M1 A1
Estimate of number of times quicker than 56.6 is 3 times
Total 3

24 (a) $=0.18 \times 0.18=0.0324$
M1 A1
(b) $=1-\mathrm{P}$ (no post over 4 days)
$=1-(0.18)^{4}$
M1
= 1 - 0.00104...
= $0.9989 \ldots$
$=0.999$ (3sf)
A1 Total 4

25 External angle of regular hexagon $=360 \div 6=60^{\circ}$
Consider top left triangle:
$\sin x=\frac{O P P}{H Y P}$
$\sin 60^{\circ}=\frac{O P P}{3}$
OPP $=3 \times \sin 60^{\circ}=3 \times \frac{\sqrt{3}}{2}=\frac{3}{2} \sqrt{3}$
(or for
M1
Pythagoras')
$\cos x=\frac{A D J}{H Y P}$
$\cos 60^{\circ}=\frac{A D J}{3}$
$A D J=3 \times \cos 60^{\circ}=3 \times \frac{1}{2}=\frac{3}{2}$
M1

Height $=3 \times 3+\frac{3}{2}$

$$
=10 \frac{1}{2} \text { or } \frac{21}{2}
$$

Width $=5 \times \frac{3}{2} \sqrt{3}$

$$
=\frac{15}{2} \sqrt{3}
$$

Area $=\frac{21}{2} \times \frac{15}{2} \sqrt{3}=\frac{315}{4} \sqrt{3} \mathrm{~cm}^{2}$
Total 5

26 (a) Quad. sequence so second differences constant:

Hence first differences are:
M1
$k=19+8=27$ A1
(b) Let nth term $=a n^{2}+b n+c$

We have

$$
\begin{aligned}
& a+b+c=7 \\
& 3 a+b=2 \\
& 2 a=2
\end{aligned}
$$

Hence, $a=1$ B1
So
$(3 \times 1)+b=2$
M1
And
$b=2-3=-1$
$c=7$ M1
nth term $=n^{2}-n+7$

