For \boldsymbol{AQA}

Mathematics

Paper 2 (Calculator)

Higher Tier

Churchill Paper 2C – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Churchill Maths

Written by Shaun Armstrong

Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 2C Marking Guide – AQA Higher Tier

1	$\frac{1}{6} =$	0.166	6	_				
	0.16		0.166	0.167	0.17		B1	Total 1
2	3 × 3	s = 9 s	so 18 × 3 = 5	4				
	6		24	324	Ļ		B1	Total 1
3	2.05	≤ <i>w</i> <	2.15	2.1 ≤ <i>w</i> < 2.2	2			
	2.05	< w <	2.15	2.095 ≤ <i>w</i> <	2.15		B1	Total 1
4	(a)	0 ≤ <i>N</i>	V≤9 10:	≤ N ≤ 19 2	$20 \le N \le 29$	$30 \le N \le 39$	B1	
	(b)	_						
		Nun	nber of Apps (<i>N</i>)	Frequency	Midpoint	Frequency × midpoint		
			$0 \le N \le 9$	4	4.5	18		
		1	$0 \le N \le 19$	11	14.5	159.5		
		2	$0 \le N \le 29$	6	24.5	147		
		3	$0 \le N \le 39$	7	34.5	241.5		
		4	$0 \le N \le 49$	2	44.5	89		
	Total no. of apps = 18 + 159.5 + 147 + 241.5 + 89 = 655				M1			
		Mea	$n \approx \frac{655}{30} = 21$.8 (3sf)			M1 A1	Total 4
5	(2)	0.0	Cothin has r	un 55 km in	30 minutos			
5	(a)	e.y.	He would ru	n 1 km in 3	$0 \div 5.5 = 5.45$	minutes	M1	
		He would run 20 km in 20 × 5.45 = 109.09 minutes = 1 hour 49 minutes (nearest minute)					M1	
						A1		
	(b)	e.g.	It is likely to	have led to a s	maller answe	r than is realistic	B1	
		U	as he will pro	obably get tired	d and slow do	wn	B1	Total 5

				C
	Arc o Corr On t The	of circle centre <i>C</i> , radius 8.5 cm ect method of construction of bisector of angle <i>BAC</i> he drawing, distance ≈ 9.3 cm tree is 465 m from <i>D</i> [Accept 440 to 490]	B1 M1 M1 A1	Total 4
7	(a)	$1 m^2 = 100^2 cm^2 = 10000 cm^2$ 0.4 m ² = 0.4 × 10000 = 4000 cm ²		
		40 cm ² (4000 cm^2) 40 000 cm ² 400 000 cm ²	B1	
	(b)	5 miles = 5×5289 ft = 26445 ft = 12×26445 in = 317340 in = 2.54×317340 cm = 806043.6 cm = 8060.436 m	M1	
		= 8.060436 km Error $= 8.060436 - 8 \text{ km} = 0.060436 \text{ km}$ % error $= \frac{0.060436}{8.060436} \times 100\%$	M1	
		= 0.7497% = 0.750% (3sf)	A1	Total 4

8	(a)	4m - 2 < 5 4m < 7 m < $\frac{7}{4}$ [or m < 1.75]	M1 A1	
	(b)	-12 + 7 ≤ 4n ≤ 5 + 7 -5 ≤ 4n ≤ 12	M1	
		$-\frac{5}{4} \le n \le 3$	M1	
		⁴ { -1, 0, 1, 2, 3 }	A1	Total 5
9	(a)	Lily paid £12 to play 12 games £6 profit so she got $6 + 12 = £18$ in winnings [Lily won $18 \div 3 = 6$ times] Mila paid £25 £4 loss so she got $25 - 4 = £21$ in winnings [Mila won $21 \div 3 = 7$ times]	M1	
		Mila won more games	A1	
	(b)	Total games = $12 + 25 = 37$ Total winnings = $18 + 21 = £39$		
		No. of games won = $39 \div 3 = 13$	M1	
		Probability of winning = $\frac{13}{37}$	A1	
	(c)	Owner received £200 for 200 games played Owner paid out 200 – 32 = £168		
		No. of games won = $168 \div 3 = 56$ Probability of winning = $\frac{56}{200}$	M1	
		$=\frac{7}{25}$	A1	
	(d)	a a		

(d) e.g. The second estimate is likely to be more accurate as it is based on a larger number of games

Total 7

B1

11	(√ 6	$ + \sqrt{8})^{2} = (\sqrt{6} + \sqrt{8})(\sqrt{6} + \sqrt{8}) $ = 6 + \sqrt{6} \sqrt{8} + \sqrt{6} \sqrt{8} + 8 = 14 + \sqrt{48} + \sqrt{48}	M1	
		$= 14 + 2\sqrt{48} + \sqrt{46}$ = 14 + 2\sqrt{48} = 14 + 2\sqrt{16 \times 3}	M1	
		= $14 + 2 \times 4 \sqrt{3}$ = $14 + 8 \sqrt{3}$	A1	Total 3
12	e.g.	Let first odd number be $2n + 1$ where <i>n</i> is an integer Next 2 odd numbers are $2n + 3$ and $2n + 5$ Sum = $2n + 1 + 2n + 3 + 2n + 5$ = $6n + 9$	M1	
		= 3(2n + 3) $2n + 3 is an integer so 2(2n + 3) will be a multiple of 3$	M1	Total 2
		2n + 3 is an integer so $3(2n + 3)$ will be a multiple of 3	AI	TOTAL 2
13	(a)	e.g. Because that point is an outlier – it does not fit with the trend of the rest of the data	B1	
	(b)	 e.g. No, because the points plotted are the best for each age – it only takes one exceptional athlete to produce an outlier so it could be correct 	B1	
	(c)	Time		
	(-)	(seconds)		
		12.5 - 🗙		
		12 -		
		11.5 -	M1	
		11		
		10.5 -		
		10 -		
		11 12 13 14 15 16 17 18 19 20 (vears)		
		≈ 11.9 seconds (from line of best fit)	A1	
		[Line can consider or ignore the outlier]		
	(_1)			
	(a)	e.g. Because age 30 is outside the range of the data – it requires extrapolation and we don't know if the trend continues	B1	Total 5

14	Angle VWX = exterior angle = $360 \div 8 = 45^{\circ}$ Angle UVW = interior angle = $180 - 45 = 135^{\circ}$ By symmetry, angle RVW = $135 \div 2 = 67.5^{\circ}$ Angles on a straight line total 180° so angle WVX = $180 - 67.5 = 112.5^{\circ}$ Angles in a triangle total 180° so angle VXW = $180 - (45 + 112.5) = 22.5^{\circ}$		
	21.5° (22.5°) 24° 25°	B1	Total 1
15	81 = 3 ⁴ , 27 = 3 ³ , 9 = 3 ² so $(3^4)^{32} \times (3^3)^{40} = (3^2)^x$ $3^{128} \times 3^{120} = 3^{2x}$ 128 + 120 = 2x $x = 248 \div 2 = 124$		
	72 (124) 248 372	B1	Total 1
16	Volume = $x \times (x - 2) \times 3$ = $3x(x - 2)$		
	So $3x(x-2) = 72$ $3x^2 - 6x - 72 = 0$	M1	
	$x^2 - 2x - 24 = 0$ (x + 4)(x - 6) = 0	M1	
	x = -4 or 6 x is a length so can't be negative, hence $x = 6$	A1	Total 3
17	Volume of cylinder = $\pi r^2 h$		
	Volume of coin = $\pi \times (1.2)^2 \times 0.2 = 0.9047$ cm ³ Mass = volume × density	M1	
	Mass of coin = $0.9047 \times 10.5 = 9.500 g$	M1	
	Number of atoms = $0.009500 \div 1.79 \times 10^{-25}$ = 5.31×10^{22} (3sf)	M1 A1	Total 4
18	(a) = $(x + 2)^2 - 2^2 + 7$ = $(x + 2)^2 - 4 + 7$	M1	
	$=(x+2)^{2}+3$	A1	
	(b) (-2, 3)	B1	Total 3

20	(a) $f(-2) = [5 \times (-2)] - 2 = -12$ $ff(-2) = f(-12) = [5 \times (-12)] - 2 = -62$			
	-62 -42 3 18	B1		
	(b) Let $y = f(x)$ so $y = 5x - 2$ For inverse, swap x and y: $x = 5y - 2$ x + 2 = 5y $\frac{x + 2}{2} = y$	M1		
	Hence, $f^{-1}(x) = \frac{x+2}{5}$	A1	Total 3	
21	For up to 3 years the first account is better	B1		
	First account4 years: $(1.03)^4 \times 4000 = 4502$ 5 years: $(1.03)^5 \times 4000 = 4637$ (4637.10) 6 years: $(1.03)^6 \times 4000 = 4776$	M1		
	Second account 4 years: 1.02 × 1.025 × 1.03 × 1.035 × 4000 = 4458 5 years: 1.04 × 4458.22 = 4637 (4636.55) 6 years: 1.045 × 4636.55 = 4845	M1		
	e.g. If you are likely to withdraw the money within 5 years you should choose the first account to gain the most interest. If you are more likely to leave the money in the account for longer then the second	M1		
	account pays more (with the difference increasing more quickly the longer you leave it in).	A1	Total 5	
22	Area of rectangle = $12 \times 10 = 120 \text{ cm}^2$ Area of quadrilateral = area of rectangle – areas of 4 white triangles Length from A to top left corner = $12 - 4 = 8 \text{ cm}$ Length from D to top left corner = $(10 - x) \text{ cm}$	M1		
	Areas of triangles: $\frac{1}{2} \times 4 \times 5 = 10$, $\frac{1}{2} \times 5 \times 6 = 15$, $\frac{1}{2} \times 6 \times 4 = 20$, $\frac{1}{2} \times 8 \times (10 - 4) = 10$, 40	N/4		
	Area of quadrilateral = $120 - 10 - 15 - 3x - (40 - 4x)$ = $95 - 3x - 40 + 4x$			
	= 55 + x As $0 \le x \le 10$, maximum area = 55 + 10 = 65 cm ²	M1 A1		
	[Alternatively can consider maximum area of triangle ACD with AC as base. Greatest perpendicular height when D is at top left etc.]		Total 4	

TOTAL FOR PAPER: 80 MARKS