Mathematics

Paper 2 (Calculator)

Higher Tier

Churchill Paper 2C - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 2C Marking Guide - AQA Higher Tier

$1 \frac{1}{6}=0.1666 \ldots$
0.16
0.166
0.167
0.17
B1
Total 1
$2 \quad 3 \times 3=9$ so $18 \times 3=54$

24								324		B1	Total 1
3	$2.05 \leq w<2.15$	$2.1 \leq w<2.2$									
$2.05<w<2.15$	$2.095 \leq w<2.15$	B1	Total 1								

4
(a) $0 \leq N \leq 9$
$10 \leq N \leq 19$
$20 \leq N \leq 29 \quad 30 \leq N \leq 39$
B1
(b)

Number of Apps (N)	Frequency	Midpoint	Frequency \times midpoint
$0 \leq N \leq 9$	4	4.5	18
$10 \leq N \leq 19$	11	14.5	159.5
$20 \leq N \leq 29$	6	24.5	147
$30 \leq N \leq 39$	7	34.5	241.5
$40 \leq N \leq 49$	2	44.5	89

$$
\text { Total no. of apps }=18+159.5+147+241.5+89=655 \quad \text { M1 }
$$

Mean $\approx \frac{655}{30}=21.8(3 \mathrm{sf})$
M1 A1 Total 4

5
(a) e.g. Gethin has run 5.5 km in 30 minutes

He would run $\quad 1 \mathrm{~km}$ in $30 \div 5.5=5.45 \ldots$ minutes M1
He would run 20 km in $20 \times 5.45 \ldots$ M1
= 109.09... minutes $=1$ hour 49 minutes (nearest minute) A1
(b) e.g. It is likely to have led to a smaller answer than is realistic B1 as he will probably get tired and slow down

B1
Total 5

6

Arc of circle centre C, radius 8.5 cm
B1
Correct method of construction of bisector of angle BAC M1
On the drawing, distance $\approx 9.3 \mathrm{~cm}$ M1
The tree is 465 m from $D \quad$ [Accept 440 to 490]
Total 4

7 (a) $1 \mathrm{~m}^{2}=100^{2} \mathrm{~cm}^{2}=10000 \mathrm{~cm}^{2}$
$0.4 \mathrm{~m}^{2}=0.4 \times 10000=4000 \mathrm{~cm}^{2}$
$40 \mathrm{~cm}^{2} 4000 \mathrm{~cm}^{2} \quad 40000 \mathrm{~cm}^{2} \quad 400000 \mathrm{~cm}^{2} \quad$ B1
(b) 5 miles $=5 \times 5289 \mathrm{ft}=26445 \mathrm{ft}$

$$
\begin{array}{rlr}
& =12 \times 26445 \mathrm{in}=317340 \mathrm{in} & \text { M1 } \\
& =2.54 \times 317340 \mathrm{~cm}=806043.6 \mathrm{~cm} & \\
& =8060.436 \mathrm{~m} \\
& =8.060436 \mathrm{~km} & \mathrm{M} 1 \\
\text { Error } & =8.060436-8 \mathrm{~km}=0.060436 \mathrm{~km} & \\
\% \text { error } & =\frac{0.060436}{8.060436} \times 100 \% & \\
& =0.7497 \ldots \%=0.750 \%(3 \mathrm{sf}) & \text { A1 }
\end{array}
$$

Total 4

8
(a) $4 m-2<5$
$4 m<7$
$m<\frac{7}{4} \quad[$ or $m<1.75$]
(b) $-12+7 \leq 4 n \leq 5+7$
$-5 \leq 4 n \leq 12$
$-\frac{5}{4} \leq n \leq 3$
$\{-1,0,1,2,3\} \quad$ A1
Total 5

9 (a) Lily paid $£ 12$ to play 12 games
$£ 6$ profit so she got $6+12=£ 18$ in winnings
[Lily won $18 \div 3=6$ times]
Mila paid $£ 25$
$£ 4$ loss so she got $25-4=£ 21$ in winnings
[Mila won $21 \div 3=7$ times]
Mila won more games
(b) Total games $=12+25=37$

Total winnings $=18+21=£ 39$
No. of games won $=39 \div 3=13$ M1
Probability of winning $=\frac{13}{37}$ A1
(c) Owner received $£ 200$ for 200 games played

Owner paid out 200-32 = £168
No. of games won $=168 \div 3=56$
Probability of winning $=\frac{56}{200}$

$$
=\frac{7}{25}
$$

(d) e.g. The second estimate is likely to be more accurate as it is based on a larger number of games

10
(a)

M1 A1
M1 A1
M1 A1

Total 6
$11(\sqrt{6}+\sqrt{8})^{2}=(\sqrt{6}+\sqrt{8})(\sqrt{6}+\sqrt{8})$

$$
\begin{array}{ll}
=6+\sqrt{6} \sqrt{8}+\sqrt{6} \sqrt{8}+8 & \text { M1 } \\
=14+\sqrt{48}+\sqrt{48} & \\
=14+2 \sqrt{48} & \\
=14+2 \sqrt{16 \times 3} & \text { M1 } \\
=14+2 \times 4 \sqrt{3} & \\
=14+8 \sqrt{3} & \text { A1 }
\end{array} \text { Total 3 }
$$

12 e.g. Let first odd number be $2 n+1$ where n is an integer
Next 2 odd numbers are $2 n+3$ and $2 n+5$
M1
Sum $=2 n+1+2 n+3+2 n+5$

$$
=6 n+9
$$

$$
=3(2 n+3)
$$

M1
$2 n+3$ is an integer so $3(2 n+3)$ will be a multiple of 3
A1
Total 3

13 (a) e.g. Because that point is an outlier - it does not fit with the
trend of the rest of the data

B1
(b) e.g. No, because the points plotted are the best for each age - it only takes one exceptional athlete to produce an outlier so it could be correct
(c) Time

≈ 11.9 seconds (from line of best fit)
[Line can consider or ignore the outlier]
(d) e.g. Because age 30 is outside the range of the data - it requires extrapolation and we don't know if the trend continues

Total 5

14 Angle $V W X=$ exterior angle $=360 \div 8=45^{\circ}$
Angle UVW $=$ interior angle $=180-45=135^{\circ}$
By symmetry, angle $R V W=135 \div 2=67.5^{\circ}$
Angles on a straight line total 180° so angle $W V X=180-67.5=112.5^{\circ}$
Angles in a triangle total 180° so angle $V X W=180-(45+112.5)=22.5^{\circ}$
21.5°
24°
25°
B1
Total 1
$1581=3^{4}, 27=3^{3}, 9=3^{2}$ so $\left(3^{4}\right)^{32} \times\left(3^{3}\right)^{40}=\left(3^{2}\right)^{x}$

$$
3^{128} \times 3^{120}=3^{2 x}
$$

$$
128+120=2 x
$$

$$
x=248 \div 2=124
$$

72

248
372
B1
Total 1

16 Volume $=x \times(x-2) \times 3$

$$
=3 x(x-2)
$$

So

$$
\begin{array}{ll}
3 x(x-2)=72 & \text { M1 } \\
3 x^{2}-6 x-72=0 & \\
x^{2}-2 x-24=0 & \\
(x+4)(x-6)=0 & \text { M1 } \\
x=-4 \text { or } 6 &
\end{array}
$$

x is a length so can't be negative, hence $x=6$
A1 Total 3

17 Volume of cylinder $=\pi r^{2} h$
Volume of coin $=\pi \times(1.2)^{2} \times 0.2=0.9047 \ldots \mathrm{~cm}^{3} \quad$ M1
Mass $=$ volume \times density
Mass of coin $=0.9047 \ldots \times 10.5=9.500 \ldots \mathrm{~g}$

$$
=0.009500 \ldots \mathrm{~kg}
$$

Number of atoms $=0.009500 \ldots \div 1.79 \times 10^{-25}$ $=5.31 \times 10^{22}(3 \mathrm{sf})$

18
(a) $=(x+2)^{2}-2^{2}+7$
$=(x+2)^{2}-4+7$
$=(x+2)^{2}+3$
A1
(b) $(-2,3)$
B1

Total 3

19 (a)

Acceleration	$=$ gradient of tangent		M1
	$\approx \frac{10-3.6}{3.9-0.3}$	M1	
	$=1.777 \ldots$		
Acceleration	$\approx 1.8 \mathrm{~ms}^{-2}$		A1

(b) Distance $=$ area under graph

$$
\begin{aligned}
& \approx \frac{1}{2} \times 1 \times 4.3+\frac{1}{2} \times 1 \times(4.3+6.6) \\
& \quad \quad+\frac{1}{2} \times 1 \times(6.6+8)+\frac{1}{2} \times 1 \times(8+8.9) \\
& =\frac{1}{2} \times(4.3+10.9+14.6+16.9)=\frac{1}{2} \times 46.7=23.35 \\
& \approx 23 \mathrm{~m}
\end{aligned}
$$

Distance $\approx 23 \mathrm{~m}$
(c) Underestimate as the graph is above the top of the triangle and trapeziums used

20
(a) $\mathrm{f}(-2)=[5 \times(-2)]-2=-12$
$\mathrm{ff}(-2)=\mathrm{f}(-12)=[5 \times(-12)]-2=-62$

B1
(b) Let $y=\mathrm{f}(x)$ so $y=5 x-2$

For inverse, swap x and y :

$$
\begin{aligned}
& x=5 y-2 \\
& x+2=5 y \\
& \frac{x+2}{5}=y
\end{aligned}
$$

Hence, $\mathrm{f}^{-1}(x)=\frac{x+2}{5}$
A1 Total 3

21 For up to 3 years the first account is better
B1
First account $\quad 4$ years: $\quad(1.03)^{4} \times 4000=4502$

$$
5 \text { years: } \quad(1.03)^{5} \times 4000=4637 \quad(4637.10) \quad \text { M1 }
$$

6 years: $\quad(1.03)^{6} \times 4000=4776$
Second account $\quad 4$ years: $1.02 \times 1.025 \times 1.03 \times 1.035 \times 4000=4458 \quad$ M1
5 years: $\quad 1.04 \times 4458.22=4637 \quad(4636.55)$
6 years: $\quad 1.045 \times 4636.55=4845$
$\begin{array}{lll}\text { e.g. If you are likely to withdraw the money within } 5 \text { years you should } & \text { M1 } \\ \text { choose the first account to gain the most interest. If you are more } \\ \text { likely to leave the money in the account for longer then the second } \\ \text { account pays more (with the difference increasing more quickly the } & \\ \text { longer you leave it in). }\end{array}$
Total 5

22 Area of rectangle $=12 \times 10=120 \mathrm{~cm}^{2}$
Area of quadrilateral $=$ area of rectangle - areas of 4 white triangles
Length from A to top left corner $=12-4=8 \mathrm{~cm}$
Length from D to top left corner $=(10-x) \mathrm{cm}$
Areas of triangles: $\frac{1}{2} \times 4 \times 5=10, \quad \frac{1}{2} \times 5 \times 6=15$, $\frac{1}{2} \times 6 \times x=3 x, \quad \frac{1}{2} \times 8 \times(10-x)=40-4 x \quad$ M1
Area of quadriateral $=120-10-15-3 x-(40-4 x)$

$$
\begin{aligned}
& =95-3 x-40+4 x \\
& =55+x
\end{aligned}
$$

M1
As $0 \leq x \leq 10$, maximum area $=55+10=65 \mathrm{~cm}^{2} \quad$ A1
[Alternatively can consider maximum area of triangle ACD with AC as base. Greatest perpendicular height when D is at top left etc.]

Total 4

