Mathematics

Paper 2 (Calculator)

Higher Tier

Churchill Paper 2B - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 2B Marking Guide - AQA Higher Tier

1
$\frac{5}{8}$
$\frac{3}{5}$

$$
\text { Total } 1
$$

2
$y=4 x+1 \quad y=x-3 \quad y=1-3 x$
$y=2 x-1$
B1 Total 1
$31 \%=400000,0.01 \%=4000,0.02 \%=8000$
$£ 800000 £ 80000 \quad$ B1 $£ 8000$ Total 1
$4 \quad 2 \mathbf{a}=\binom{8}{2}$
$2 \mathbf{a}-\mathbf{b}=\binom{8}{2}-\binom{-2}{3}=\binom{10}{-1}$
$\binom{6}{-1} \quad\binom{6}{-5} \quad\binom{6}{-2} \quad\binom{10}{-1}$
B1 Total 1

5 Let rain in January be $x \mathrm{~mm}$
Rain in February $=(x+16) \mathrm{mm}$
Rain in March $=[(x+16)+5]=(x+21) \mathrm{mm} \quad$ M1
So,

$$
\begin{aligned}
& x+(x+16)+(x+21)=172 \\
& 3 x+37=172 \\
& 3 x=135 \\
& x=45
\end{aligned}
$$

There was 45 mm of rain in January

A1
 Total 3

6 Angles on a straight line add up to 180°

$$
180-124=56^{\circ}
$$

Angles in small right-angled triangle add up to 180°

$$
180-(90+56)=180-146=34^{\circ}
$$

Angles in large right-angled triangle add up to 180°

$$
180-(90+34)=180-124=56^{\circ}
$$

$x=56$
A1 Total 3

7 Time $=\frac{\text { distance }}{\text { speed }}$
Giving: $\quad \frac{70}{0.1}=700$ seconds $\quad \frac{4}{40}=\frac{1}{10}$ hour $=360$ seconds
$\frac{2000}{4}=500$ seconds $\quad \frac{500}{4500}=\frac{1}{9}$ hour $=400$ seconds
70 metres at $0.1 \mathrm{~m} / \mathrm{s}$
4 kilometres at $40 \mathrm{~km} / \mathrm{h}$
2 kilometres at $4 \mathrm{~m} / \mathrm{s}$
500 kilometres at $4500 \mathrm{~km} / \mathrm{h}$
B1
Total 1

8
(a) Distance on map $\approx 8.4 \mathrm{~cm}$
(b)

Circle, radius 4 cm , centre Loron
B1
Correct method for perpendicular bisector of Mackle and Nagel M1
Correct region shaded and accurate

9 (a) January 2014
(b) e.g. No. Although the trend is for the number of applicants to decrease, there is a seasonal variation in which each June has more applicants than the previous January. Hence, June 17 will probably have more applicants than January 17
$p(6 p-1) \quad 2 p(3 p-1) \quad 2 p(3 p-2) \quad 2 p(3 p+2)$
B1 Total 1
$112+3=5$
$60 \div 5=12$
$2 \times 12=24$, so she needs 24 litres of pineapple
$24 \div 1.5=16$, so she needs 16 cartons of pineapple
Each carton costs $£ 1.30$ so 16 cartons cost $16 \times £ 1.30=£ 20.80$
$3 \times 12=36$, so she needs 36 litres of mango
$36 \div 4=9$, so she needs 9 packs of 4 cartons
1 pack costs $£ 3.20$ so 9 packs cost $9 \times £ 3.20=£ 28.80$
Total cost $=£ 20.80+£ 28.80=£ 49.60 \quad$ M1
Total sales $=190 \times 50 p=£(190 \div 2)=£ 95$
Profit $=£ 95-£ 49.60=£ 45.40$

12 Total score in 9 tests $=9 \times 59=531$
Total score in 10 tests $=10 \times 58.5=585$
Score in 10th test $=585-531=54$
Total score in 11 tests $=11 \times 60=660$
Score in 11th test $=660-585=75$
Difference $=75-54=21$
A1
Total 3

13 e.g. Let common difference be d

$$
\begin{array}{ll}
& 7^{\text {th }} \text { term }=1^{\text {st }} \text { term }+6 \times d \\
\text { So, } & \text { Ma }=a+6 d \\
8 a=6 d \\
& \begin{array}{l}
\text { 8 }=\frac{8 a}{6}=\frac{4}{3} a \\
\\
4^{\text {th }} \text { term }=1^{\text {st }} \text { term }+3 \times d \\
\text { So, } \\
k a=a+3 \times \frac{4}{3} a \\
k a=a+4 a=5 a \\
k=5
\end{array} \\
& \\
& \text { M1 } \\
&
\end{array}
$$

A1 Total 3

14 (a) $2 p(2 p-3)=0$ M1
$p=0$ or $\frac{3}{2}$ A1
(b) $(5 m+3)(m-2)$

$(5 m-6)(m+1) \quad(5 m+1)(m-6)$
B1
Total 3
$15 T$ tonnes $=1000 T \mathrm{~kg}$
$2.5 \mathrm{~g} / \mathrm{cm}^{3}=(100)^{3} \times 2.5 \mathrm{~g} / \mathrm{m}^{3}$
M1
$=2500000 \mathrm{~g} / \mathrm{m}^{3}$
$=2500 \mathrm{~kg} / \mathrm{m}^{3}$
Density $=\frac{\text { mass }}{\text { volume }}$
$2500=\frac{1000 T}{\text { volume }}$ M1
$2500 \times$ volume $=1000 T$
Volume $=\frac{1000 T}{2500} \mathrm{~m}^{3}$

$$
=\frac{10}{25} T=\frac{2}{5} T=0.4 T \mathrm{~m}^{3}
$$

A1 Total 3
(a)

Monday Tuesday

(b) $\begin{aligned} & =0.4 \times 0.5+0.6 \times 0.3 \\ & =0.2+0.18 \\ & =0.38\end{aligned}$

M1

$$
=0.38
$$

(c) $=1-\mathrm{P}$ (nobody absent either day)

$$
\begin{aligned}
& =1-0.4 \times 0.5 \\
& =1-0.2
\end{aligned}
$$

$$
=0.8 \quad \text { A1 }
$$

1730% drop is to $0.7 \times$ value

After 3 years value will be $0.7 \times 0.85 \times 0.85 \times$ new value

$$
\begin{aligned}
& =0.50575 \times \text { new value } \\
& =50.575 \% \text { of new value }
\end{aligned}
$$

EITHER: Greg is not correct as the value is still above half A1
OR: \quad Greg is correct as the value is about half of the new value
Total 3

18 (a) Let E be point on $A D$ such that $E D=7.3 \mathrm{~cm}$
Angle $A E B$ will be a right angle
$\cos 58^{\circ}=\frac{A E}{A B}=\frac{A E}{4.7} \quad \mathrm{M} 1$
$A E=4.7 \times \cos 58^{\circ} \quad$ M1
$A E=2.490 \ldots \mathrm{~cm}$
$A D=7.3+2.490 \ldots=9.790 \ldots=9.8 \mathrm{~cm}(1 \mathrm{dp})$
A1
(b) e.g. $\sin 58^{\circ}=\frac{B E}{A B}=\frac{B E}{4.7}$
$B E=4.7 \times \sin 58^{\circ}=3.985 \ldots$
$C D=B E=3.985 \ldots \mathrm{~cm}$
$\tan ($ angle $A C D)=\frac{A D}{C D}=\frac{9.790}{3.985}=2.456 \ldots \quad \mathrm{M} 1$
Angle $A C D=\tan ^{-1} 2.456 \ldots=67.848 \ldots{ }^{\circ}$
Angle $A C B=90^{\circ}-$ angle $A C D=90-67.848 \ldots$

$$
=22.151 \ldots=22.2^{\circ}(3 \mathrm{sf})
$$

Total 4

20
(a) $13 \leq L<14$ B1
(b) $13.15 \leq L<13.25$
(c) For C $13.3 \leq L<13.4$

For D $\quad 12.5 \leq L<13.5$
No, it is not possible
e.g. The lower bound for C's value is greater than the upper bound for B's value so they cannot both be correct

M1 A1 Total 4

21 (a) e.g. Angle $C A D$ is common to both triangles
Angle $A E B=$ angle $A D C$ as they are corresponding M1
Angle $A B E=$ angle $A C D$ as they are corresponding All three angles are the same so the triangles are similar A1
(b) As area $B C D E=$ area $A B E$, we know area $A C D=2 \times$ area $A B E$ Therefore area scale factor $=2$, so length scale factor $=\sqrt{2}$
Hence $\quad \frac{A C}{A B}=\sqrt{2}$

$$
\frac{A B+3}{A B}=\sqrt{2}
$$

M1

$$
A B+3=\sqrt{2} A B
$$

$$
3=\sqrt{2} A B-A B=A B(\sqrt{2}-1) \quad \mathrm{M} 1
$$

$$
A B=\frac{3}{\sqrt{2}-1}=7.2426 \ldots=7.24 \mathrm{~cm}(3 \mathrm{sf})
$$

A1 Total 6

22
(a) $\frac{2}{\sqrt{3}}=\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}=\frac{2}{3} \sqrt{3}$

$$
\sqrt{3}-\frac{2}{\sqrt{3}}=\sqrt{3}-\frac{2}{3} \sqrt{3}=\frac{1}{3} \sqrt{3} \quad\left[\text { or } \frac{\sqrt{3}}{3}\right]
$$

(b) $\frac{2 \sqrt{5}}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$

$$
=\frac{2 \sqrt{5}(2-\sqrt{5})}{2^{2}-(\sqrt{5})^{2}}
$$

$$
=\frac{4 \sqrt{5}-10}{4-5}
$$

$$
=\frac{4 \sqrt{5}-10}{-1}
$$

$$
=10-4 \sqrt{5} \quad \mathrm{~A} 1
$$

23 O to RH edge of rectangle $=18-10=8 \mathrm{~cm}$
$\cos x=\frac{8}{10}$
$x=\cos ^{-1} \frac{8}{10}=36.869 \ldots$.

Area of triangle $=\frac{1}{2} \times 8 \times 10 \times \sin 36.9^{\circ}=24 \mathrm{~cm}^{2}$
Angle of sector (rest of shaded area) $=180-36.869 \ldots=143.130 \ldots{ }^{\circ}$
Area of sector $=\frac{143.1}{360} \times \pi \times 10^{2}$

$$
=124.90 \ldots \mathrm{~cm}^{2}
$$

Shaded area $=24+124.9=148.90 \ldots=149 \mathrm{~cm}^{2}(3 \mathrm{sf})$
A1 Total 5
$24 \quad 1^{\text {st }}$ equation $\rightarrow y^{2}=x+2$
$2^{\text {nd }}$ equation $\rightarrow y^{2}-x^{2}=0$
$\rightarrow y^{2}=x^{2}$
So, $\quad x+2=x^{2}$
M1 A1
$x^{2}-x-2=0$
$(x+1)(x-2)=0$
M1
$x=-1$ or 2 A1

When $x=-1, y=1$
When $x=2, y=2$
A1 Total 5

