For \boldsymbol{AQA}

Mathematics

Paper 2 (Calculator)

Higher Tier

Churchill Paper 2B – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Churchill Maths

Written by Shaun Armstrong

Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 2B Marking Guide – AQA Higher Tier

1	$\frac{5}{8} \qquad \frac{3}{5} \qquad \frac{1}{3} \qquad \frac{3}{8}$	B1	Total 1
2	y = 4x + 1 $y = x - 3$ $y = 1 - 3x$ $y = 2x - 1$	B1	Total 1
3	1% = 400000, 0.01% = 4000, 0.02% = 8000		
	£800000 £80000 £800 £800	B1	Total 1
4	$2\mathbf{a} = \begin{pmatrix} 8\\ 2 \end{pmatrix}$ $2\mathbf{a} - \mathbf{b} = \begin{pmatrix} 8\\ 2 \end{pmatrix} - \begin{pmatrix} -2\\ 3 \end{pmatrix} = \begin{pmatrix} 10\\ -1 \end{pmatrix}$		
	$\begin{pmatrix} 6 \\ -1 \end{pmatrix} \begin{pmatrix} 6 \\ -5 \end{pmatrix} \begin{pmatrix} 6 \\ -2 \end{pmatrix} \begin{pmatrix} 10 \\ -1 \end{pmatrix}$	B1	Total 1
5	Let rain in January be x mm Rain in February = $(x + 16)$ mm Rain in March = $[(x + 16) + 5] = (x + 21)$ mm So, $x + (x + 16) + (x + 21) = 172$ 3x + 37 = 172 3x = 135 x = 45 There was 45 mm of rain in January	M1 M1 A1	Total 3
6	Angles on a straight line add up to 180° $180 - 124 = 56^{\circ}$ Angles in small right-angled triangle add up to 180° $180 - (90 + 56) = 180 - 146 = 34^{\circ}$ Angles in large right-angled triangle add up to 180° $180 - (90 + 34) = 180 - 124 = 56^{\circ}$ x = 56	M1 M1 A1	Total 3
7	Time = $\frac{\text{distance}}{\text{speed}}$ Giving: $\frac{70}{0.1}$ = 700 seconds $\frac{4}{40}$ = $\frac{1}{10}$ hour = 360 seconds $\frac{2000}{4}$ = 500 seconds $\frac{500}{4500}$ = $\frac{1}{9}$ hour = 400 seconds70 metres at 0.1 m/s4 kilometres at 40 km/h2 kilometres at 4 m/s500 kilometres at 4500 km/h	В1	Total 1

11	$24 \div 1.5$ Each car $3 \times 12 =$ $36 \div 4 =$ 1 pack co Total cos	12 24, so she needs 24 litres of pineapple = 16, so she needs 16 cartons of pineapple ton costs £1.30 so 16 cartons cost $16 \times £1.30 = £20.80$ 36, so she needs 36 litres of mango 9, so she needs 9 packs of 4 cartons osts £3.20 so 9 packs cost 9 × £3.20 = £28.80 it = £20.80 + £28.80 = £49.60	M1 A1 M1	
		$es = 190 \times 50p = \pounds(190 \div 2) = \pounds95$ $95 - \pounds49.60 = \pounds45.40$	A1	Total 4
12		re in 9 tests = 9 × 59 = 531 re in 10 tests = 10 × 58.5 = 585	M1	
	Score in Total sco	10th test = 585 – 531 = 54 re in 11 tests = 11 × 60 = 660	M1	
		11th test = 660 – 585 = 75 e = 75 – 54 = 21	A1	Total 3
13	e.g. Let So,	$8a = 6d$ $d = \frac{8a}{6} = \frac{4}{3}a$	M1	
	So,	4 th term = 1 st term + 3 × d ka = a + 3 × $\frac{4}{3}a$ ka = a + 4a = 5a k = 5	M1 A1	Total 3
14	p =	(2p-3) = 0 0 or $\frac{3}{2}$	M1 A1	
		(5m-3)(m+2) (m-6)(m+1) (5m+1)(m-6)	B1	Total 3
15	-	$3^{3} = (100)^{3} \times 2.5 \text{ g/m}^{3}$ = 2500000 g/m ³ = 2500 kg/m ³	M1	
	Density = $\frac{11235}{\text{volume}}$ $2500 = \frac{1000 T}{\text{volume}}$ $2500 \times \text{volume} = 1000 T$ $\text{Volume} = \frac{1000 T}{2500} \text{ m}^3$			
		2500^{-100} = $\frac{10}{25}T = \frac{2}{5}T = 0.4T \text{ m}^3$	A1	Total 3

16	(a)	Monday Tuesday		
		0.5 Nobody 0.4 Nobody absent 0.5 1 or more absent		
		0.6 0.7 0.3 Nobody absent 0.3 Nobody absent 0.7 1 or more absent	M1 A1	
	(b)	$= 0.4 \times 0.5 + 0.6 \times 0.3$	M1	
		= 0.2 + 0.18 = 0.38	A1	
	(c)	= 1 – P(nobody absent either day) = 1 – 0.4×0.5	M1	
		= 1 – 0.2 = 0.8	A1	Total 6
17		drop is to 0.7 × value drop is to 0.85 × value	M1	
	After	r 3 years value will be 0.7 × 0.85 × 0.85 × new value = 0.50575 × new value = 50.575% of new value	M1	
	EITH OR:	HER: Greg is not correct as the value is still above half Greg is correct as the value is about half of the new value	A1	Total 3
18	(a)	Let <i>E</i> be point on <i>AD</i> such that <i>ED</i> = 7.3 cm Angle <i>AEB</i> will be a right angle		
		$\cos 58^\circ = \frac{AE}{AB} = \frac{AE}{4.7}$	M1	
		$AE = 4.7 \times \cos 58^{\circ}$ AE = 2.490 cm	M1	
		<i>AD</i> = 7.3 + 2.490 = 9.790 = 9.8 cm (1dp)	A1	
	(b)	e.g. $\sin 58^\circ = \frac{BE}{AB} = \frac{BE}{4.7}$		
		$BE = 4.7 \times \sin 58^\circ = 3.985$ CD = BE = 3.985 cm	M1	
		tan (angle <i>ACD</i>) = $\frac{AD}{CD}$ = $\frac{9.790}{3.985}$ = 2.456	M1	
		Angle $ACD = \tan^{-1} 2.456 = 67.848^{\circ}$ Angle $ACB = 90^{\circ}$ – angle $ACD = 90 - 67.848$ $= 22.151 = 22.2^{\circ}$ (3sf)	A1	Total 6
·				

22	(a) $\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3} = \frac{2}{3}\sqrt{3}$	M1	
	$\sqrt{3} - \frac{2}{\sqrt{3}} = \sqrt{3} - \frac{2}{3}\sqrt{3} = \frac{1}{3}\sqrt{3}$ [or $\frac{\sqrt{3}}{3}$]	A1	
	(b) $\frac{2\sqrt{5}}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$ = $\frac{2\sqrt{5}(2-\sqrt{5})}{2^2-(\sqrt{5})^2}$	M1	
	$= \frac{4\sqrt{5} - 10}{4 - 5}$ = $\frac{4\sqrt{5} - 10}{-1}$	M1	
	-1 = 10 - 4 $\sqrt{5}$	A1	Total 5
23	O to RH edge of rectangle = $18 - 10 = 8$ cm 8 10 cm		
	$\cos x = \frac{8}{10}$	M1	
	$x = \cos^{-1} \frac{8}{10} = 36.869^{\circ}$	A1	
	Area of triangle = $\frac{1}{2} \times 8 \times 10 \times \sin 36.9^{\circ} = 24 \text{ cm}^2$	M1	
	Angle of sector (rest of shaded area) = $180 - 36.869 = 143.130^{\circ}$		
	Area of sector = $\frac{143.1}{360} \times \pi \times 10^2$	M1	
	= 124.90 cm ² Shaded area = 24 + 124.9 = 148.90 = 149 cm ² (3sf)	A1	Total 5
24	$\begin{array}{l} 1^{\text{st}} \text{ equation } \rightarrow y^2 = x + 2 \\ 2^{\text{nd}} \text{ equation } \rightarrow y^2 - x^2 = 0 \\ \rightarrow y^2 = x^2 \end{array}$		
	So, $x + 2 = x^2$ $x^2 - x - 2 = 0$	M1 A1	
	$x^{2} - x - 2 = 0$ (x + 1)(x - 2) = 0 x = -1 or 2	M1 A1	

When x = -1, y = 1A1Total 5When x = 2, y = 2A1Total 5

TOTAL FOR PAPER: 80 MARKS