For \boldsymbol{AQA}

Mathematics

Paper 1 (Non-Calculator)

Higher Tier

Churchill Paper 1A – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Churchill Maths

Written by Shaun Armstrong

This paper is part of a product for use in the single school or college that has purchased the licence. However, this paper is available as a sample that can be used without licence.

2017 AH1A Marks Page 1 © Churchill Maths Limited Licensed to Sir Thomas Fremantle School

Churchill Paper 1A Marking Guide – AQA Higher Tier

1	ZA & & 6 T B & A		
	4 5 6 6.5	B1	Total 1
2	$3\frac{1}{2} \times \pounds 10 = \pounds 35$ $3\frac{1}{2} \times 60p = \pounds 1.80 + \pounds 0.30 = \pounds 2.10$		
	$3\frac{1}{2} \times \pounds10.60 = \pounds35 + \pounds2.10 = \pounds37.10$		
	£31.80 £35.30 £36.80 £37.10	B1	Total 1
3	2 6 18 54 ×3 ×3 ×3 Next term = 3 × 54 = 162		
	72 162 166 2916	B1	Total 1
4	$\frac{3}{10} \div \frac{1}{2} = \frac{3}{10} \times \frac{2}{1} = \frac{6}{10} = \frac{3}{5}$		
	$\frac{3}{20}$ $\frac{3}{5}$ $\frac{5}{6}$ $1\frac{1}{5}$	B1	Total 1
5	 (a) 1 chain costs 180 ÷ 20 = £9 1 bead costs 750 ÷ 500 = £1.50 1 spacer costs 90 ÷ 100 = £0.90 1 heart charm costs 120 ÷ 30 = £4 	M1	
	Total = 9 + (8 × 1.50) + (4 × 0.90) + 4	M1	
	= 9 + 12 + 3.60 + 4 = £28.60	A1	
	(b) Profit on 1 bracelet = $39.90 - 28.60 = \pounds 11.30$ Profit on 15 bracelets = 15×11.30 = $10 \times 11.30 + 5 \times 11.30$	M1	
_	= 113 + 56.50 = £169.50	A1	Total 5
6	The angles in a triangle add up to 180° so		
	4x + 3x + 20 + 5x - 8 = 180 12x + 12 = 180 12x = 168	M1	
	x = 14	A1	
	4x = 56, $3x + 20 = 62$ and $5x - 8 = 62$	M1	
	As angle ABC = angle ACB the triangle is isosceles The two sides opposite the equal angles are the same length Hence, AB = AC		Total 4

7	(a)	= 7 × 6 = 42 ways		B1	
	(b)	Smallest 2 frame sizes: no. of combinations = 2 × 7 × 3 = 42 Largest 3 frame sizes:		M1	
		no. of combinations = $3 \times 7 \times 6 = 126$ Total no. of combinations = $42 + 126 = 168$		A1	Total 3
8	(a)	e.g. She can not be sure of this because 10 is a very small number of trials		B1	
	(b)	No. of times red bead picked = 7 + 6 + 8 + 6 = 27 No. of trials = 40		M1	
		P(Faria picks a red bead) = $\frac{27}{40}$		A1	
	(c)	No, she is wrong.			
		We know the probability that one bead will be green is $\frac{6}{10}$.			
		However, we don't know the probability that the second will be green, given that the first was green, because we don't know how many beads are in the bag. Her answer assumes			
		that the bag contains 10 beads so that after removing one green bead there are 9 beads left, 5 of which are green.		B2	Total 5
9	p +	$\frac{4q-7}{7=4q} \frac{p+7}{4}$ $\frac{7}{4}$ $7p-4$ $\frac{p}{4}+7$ $p+\frac{7}{4}$	B1	Tota	al 1
10	(a)	Jeremy marks 1 homework in 60 ÷ 12 = 5 minutes Kira marks 1 homework in 120 ÷ 30 = 4 minutes Liz marks 1 homework in 6 minutes Therefore Kira is the quickest		M1 A1	
	(b)	In 20 minutes Jeremy marks 4 homeworks and Kira marks 5 homeworks Together they mark 9 homeworks in 20 minutes 36 ÷ 9 = 4 so they take 4 × 20 = 80 minutes 4.30 pm + 80 minutes = 5.30 pm + 20 minutes = 5.50 pm They finish marking at 5.50 pm		M1 M1 A1	Total 5
11	This So,	week = 100% week = $120\% = 240$ $10\% = 240 \div 12 = 20$ $100\% = 10 \times 20 = 200$ nne sent 200 emails last week		M1 A1	Total 2

15 Radius of inner circle = $10 \div 2 = 5$ Area of inner circle = $\pi \times 5^2 = 25\pi$ Radius of outer circle = distance from centre to corner of square:

Pythagoras': $r^2 = 5^2 + 5^2 = 25 + 25 = 50$	M1
Area of outer circle = $\pi \times 50 = 50\pi$	
Shaded area = $50\pi - 25\pi = 25\pi$	M1
Therefore shaded area = area of inner circle	A1 Total 4

B1

16				
	$h: r = 3: 2 \text{ so } h = \frac{3}{2}r$	(1)	B1	
	h + 20: r + 20 = 4:3 so	$h + 20 = \frac{4}{3}(r + 20)$	M1	
		3(h + 20) = 4(r + 20) 3h + 60 = 4r + 80 (2)		
	Sub (1) into (2)	$3 \times \frac{3}{2}r + 60 = 4r + 80$	M1	
		$\frac{9}{2}r + 60 = 4r + 80$		
		$\frac{1}{2}r = 20$		
		$r = 40$ so, $h = \frac{3}{2} \times 40 = 60$		
	In the week before Christr	nas, Henrik earns $h + 20 = \pounds 80$	A1	Total 4

17 8 seconds (a) Β1 (b) 15 Velocity (m/s) 10 5 00 ³⁰ Time (s)⁴⁰ 10 20 Acceleration = gradient of line = $\frac{12-8}{12-6} = \frac{4}{6} = \frac{2}{3}$ m/s² M1 A1 Distance = area under graph = $(\frac{1}{2} \times 6 \times 8) + [\frac{1}{2} \times (8 + 12) \times 6] + (8 \times 12) + (\frac{1}{2} \times 16 \times 12)$ = 24 + 60 + 96 + 96 (C) M2 = 276 m A1 Total 6

© Churchill Maths Limited Licensed to Sir Thomas Fremantle School

18	$=\frac{8^3}{4^2}$	$\frac{3}{2} = \frac{8 \times 8 \times 8}{4 \times 4} = 2 \times 2 \times 8 = 32$		
	<u>1</u> 2	32 64 128	B1	Total 1
19	5y = 5y = 10y :	$(4 \times 10^7) + (2 \times 10^6)$ $(4 \times 10^7) + (0.2 \times 10^7)$ 4.2×10^7 $= 8.4 \times 10^7$ 3.4×10^6	M1 M1 A1	Total 3
20		d is not correct When $x = \frac{1}{16}$: $\sqrt{x} = \sqrt{\frac{1}{16}} = \frac{1}{4}$ $\sqrt[4]{x} = \sqrt[4]{\frac{1}{16}} = \frac{1}{2}$	M1	
		$\frac{1}{4} < \frac{1}{2}$ making his statement incorrect	A1	Total 2
	[Any	value in the interval $0 < x < 1$ can be used]		
21	(a)	$g(5) = \frac{5+3}{2} = 4$ fg(5) = f(4) = 3 × 4 - 1 = 11	M1 A1	
	(b)	Let $g(x) = -2$ $\frac{x+3}{2} = -2$ x+3 = -4 x = -7 Therefore $g^{-1}(-2) = -7$	M1 A1	Total 4
22	(a)	sin 0° sin 30° sin 45° sin 60° sin 90° 0 $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ 1	B1	
	(b)	Area $ABC = \frac{1}{2} \times 6 \times 8 \times \sin 30^{\circ}$ = $24 \times \frac{1}{2}$ = 12 cm^2 Area $PQR = \frac{1}{2} \times 3 \times 8 \times \sin 45^{\circ}$ = $12 \times \frac{\sqrt{2}}{2}$	M1	
		$= 6 \sqrt{2} \text{ cm}^2$ Triangle <i>ABC</i> has the larger area	M1 A1	Total 4

© Churchill Maths Limited Licensed to Sir Thomas Fremantle School

23	Sub	<i>P</i> (2 <i>a</i> , <i>a</i>) into equation: $(2a)^2 + a^2 = 80$ $5a^2 = 80$ $a^2 = 16$	M1	
	Die	a = 4 [can't be -4 as positive constant]		
	Grad	(8, 4) dient of $OP = \frac{4-0}{8-0} = \frac{1}{2}$	M1	
	Gradient of tangent = $\frac{-1}{\left(\frac{1}{2}\right)} = -2$			
		ation of tangent: $y = -2x + c$ $4 = (-2 \times 8) + c$ c = 4 + 16 = 20	M1	
	Hence, $y = -2x + 20$ y-intercept = 20 so R is (0, 20) Crosses x-axis when $y = 0$: $0 = -2x + 20$ 2x = 20 x = 10 so Q is (10, 0)			
	Area	a of $OQR = \frac{1}{2} \times 10 \times 20 = 100$	A1	Total 5
24	(a)	$\overrightarrow{XY} = \overrightarrow{XO} + \overrightarrow{OY}$ $= -\frac{1}{2} \overrightarrow{OA} + \frac{1}{3} \overrightarrow{OC}$	M1	
		= -2p + 2q	A1	
	(b)	$\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}$ = $-\overrightarrow{OB} + \overrightarrow{OC}$ = $-(3p + 3q) + 6q$ = $-3p + 3q$ = $\frac{3}{2} \overrightarrow{XY}$	M1	
		As \overrightarrow{BC} is a multiple of \overrightarrow{XY} they have the same direction so BC is parallel to XY	A1	Total 4
25	(a)	$x^{2} + 4x - 3 = (x + 2)^{2} - 2^{2} - 3$ = (x + 2)^{2} - 7	M1 A1	
	(b)	$(x + 2)^{2} - 7 = 0$ (x + 2) ² = 7 x + 2 = ± $\sqrt{7}$ x = -2 ± $\sqrt{7}$	B1	
	(c)	$x = -2 \pm \sqrt{7}$ $y = 1 \pm \sqrt{2}$ $y = 1 = \pm \sqrt{2}$	Ы	
		$y - 1 = \pm \sqrt{2}$ (y - 1) ² = 2 y ² - 2y + 1 = 2 y ² - 2y - 1 = 0	M1 M1	
		$y^2 - 2y - 1 = 0$ a = -2 and $b = -1$	A1	Total 6

TOTAL FOR PAPER: 80 MARKS