Mathematics
 Paper 1 (Non-Calculator)

Higher Tier

Churchill Paper 1A - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer
Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
This paper is part of a product for use in the single school or college that has purchased the licence.
However, this paper is available as a sample that can be used without licence.

4
6
6.5

B1 Total 1
$23 \frac{1}{2} \times £ 10=£ 35$
$3 \frac{1}{2} \times 60 \mathrm{p}=£ 1.80+£ 0.30=£ 2.10$
$3 \frac{1}{2} \times £ 10.60=£ 35+£ 2.10=£ 37.10$

$4 \quad \frac{3}{10} \div \frac{1}{2}=\frac{3}{10} \times \frac{2}{1}=\frac{6}{10}=\frac{3}{5}$
$\frac{5}{6} \quad 1$
$1 \frac{1}{5}$
B1 Total 1

5 (a) 1 chain costs $180 \div 20=£ 9$
1 bead costs $750 \div 500=£ 1.50$
1 spacer costs $90 \div 100=£ 0.90$
1 heart charm costs $120 \div 30=£ 4$

$$
\begin{array}{rlr}
\text { Total } & =9+(8 \times 1.50)+(4 \times 0.90)+4 & \text { M1 } \\
& =9+12+3.60+4 & \text { A1 } \\
& =£ 28.60 &
\end{array}
$$

(b) Profit on 1 bracelet $=39.90-28.60=£ 11.30$

Profit on 15 bracelets $=15 \times 11.30$

$$
\begin{aligned}
& =10 \times 11.30+5 \times 11.30 \\
& =113+56.50 \\
& =£ 169.50 \quad \text { A1 Total } 5
\end{aligned}
$$

6 The angles in a triangle add up to 180° so

	$4 x+3 x+20+5 x-8=180$ M 1 $12 x+12=180$ $12 x=168$ $x=14$	A 1
$4 x=56,3 x+20=62$ and $5 x-8=62$	M 1	
As angle $A B C=$ angle $A C B$ the triangle is isosceles		
The two sides opposite the equal angles are the same length		
Hence, $A B=A C$		

(a) $=7 \times 6=42$ ways
(b) Smallest 2 frame sizes:
no. of combinations $=2 \times 7 \times 3=42$
Largest 3 frame sizes:
no. of combinations $=3 \times 7 \times 6=126$
Total no. of combinations $=42+126=168$

8 (a) e.g. She can not be sure of this because 10 is a very small number of trials
(b) No. of times red bead picked $=7+6+8+6=27$

No. of trials = 40
$P($ Faria picks a red bead $)=\frac{27}{40}$
(c) No, she is wrong.

We know the probability that one bead will be green is $\frac{6}{10}$.
However, we don't know the probability that the second will be green, given that the first was green, because we don't know how many beads are in the bag. Her answer assumes that the bag contains 10 beads so that after removing one green bead there are 9 beads left, 5 of which are green.

Total 5
$9 \quad p=4 q-7$
$p+7=4 q$
$q=\frac{p+7}{4}$
$\begin{array}{lllll}\frac{p+7}{4} & 7 p-4 & \frac{p}{4}+7 & p+\frac{7}{4} & \text { B1 }\end{array}$

10 (a) Jeremy marks 1 homework in $60 \div 12=5$ minutes
Kira marks 1 homework in $120 \div 30=4$ minutes
Liz marks 1 homework in 6 minutes
Therefore Kira is the quickest
A1
(b) In 20 minutes Jeremy marks 4 homeworks and Kira marks 5 homeworks
Together they mark 9 homeworks in 20 minutes
M1
$36 \div 9=4$ so they take $4 \times 20=80$ minutes
M1
$4.30 \mathrm{pm}+80$ minutes $=5.30 \mathrm{pm}+20$ minutes $=5.50 \mathrm{pm}$
A1
Total 5

11 Last week $=100 \%$
This week $=120 \%=240$
So, $\quad 10 \%=240 \div 12=20$
M1
$100 \%=10 \times 20=200$
A1
Leanne sent 200 emails last week
Total 2

12 Angle in semi-circle $=90^{\circ}$
$a=180-(90+38)$
$a=52$

38
58
62
B1
Total 1
$13 \quad 2+3=5$
$600 \div 5=120$
$2 \times 120=240$
120200

250
B1
Total 1
$14 \quad$ (a)
M1 A1

Number of orders (N)	Cum. Freq.
$40<N \leq 45$	4
$40<N \leq 50$	21
$40<N \leq 55$	54
$40<N \leq 60$	79
$40<N \leq 65$	99
$40<N \leq 70$	113
$40<N \leq 75$	120

(c) 42 (approx, from graph)

B1 Total 6

15 Radius of inner circle $=10 \div 2=5$
Area of inner circle $=\pi \times 5^{2}=25 \pi$
Radius of outer circle $=$ distance from centre to corner of square:

Pythagoras': $\quad r^{2}=5^{2}+5^{2}=25+25=50$
Area of outer circle $=\pi \times 50=50 \pi$
Shaded area $=50 \pi-25 \pi=25 \pi$
Therefore shaded area $=$ area of inner circle

16 In a normal week, let Henrik earn h and Rob earn r
$h: r=3: 2$ so $h=\frac{3}{2} r$
B1
$h+20: r+20=4: 3$ so $h+20=\frac{4}{3}(r+20)$

$$
3(h+20)=4(r+20)
$$

$$
\begin{equation*}
3 h+60=4 r+80 \tag{2}
\end{equation*}
$$

Sub (1) into (2)

$$
\begin{aligned}
& 3 \times \frac{3}{2} r+60=4 r+80 \\
& \frac{9}{2} r+60=4 r+80 \\
& \frac{1}{2} r=20 \\
& r=40 \quad \text { so, } h=\frac{3}{2} \times 40=60
\end{aligned}
$$

In the week before Christmas, Henrik earns $h+20=£ 80$

17 (a) 8 seconds
B1
(b)

$$
\text { Acceleration }=\text { gradient of line }=\frac{12-8}{12-6}=\frac{4}{6}=\frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}
$$

(c) Distance $=$ area under graph

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 6 \times 8\right)+\left[\frac{1}{2} \times(8+12) \times 6\right]+(8 \times 12)+\left(\frac{1}{2} \times 16 \times 12\right) \\
& =24+60+96+96 \\
& =276 \mathrm{~m} 2
\end{aligned}
$$

A1 Total 6
$18=\frac{8^{3}}{4^{2}}=\frac{8 \times 8 \times 8}{4 \times 4}=2 \times 2 \times 8=32$
$\frac{1}{2}$
$195 y=\left(4 \times 10^{7}\right)+\left(2 \times 10^{6}\right)$
$5 y=\left(4 \times 10^{7}\right)+\left(0.2 \times 10^{7}\right)$
$5 y=4.2 \times 10^{7} \quad$ M1
$10 y=8.4 \times 10^{7}$
$y=8.4 \times 10^{6}$
M1 A1 Total 3

20 David is not correct
e.g. When $x=\frac{1}{16}: \quad \sqrt{x}=\sqrt{\frac{1}{16}}=\frac{1}{4}$

M1

$$
\sqrt[4]{x}=\sqrt[4]{\frac{1}{16}}=\frac{1}{2}
$$

$\frac{1}{4}<\frac{1}{2}$ making his statement incorrect
A1 Total 2
[Any value in the interval $0<x<1$ can be used]

21 (a) $g(5)=\frac{5+3}{2}=4$
M1
$f g(5)=f(4)=3 \times 4-1=11$
A1
(b) Let $\mathrm{g}(x)=-2$

$$
\begin{aligned}
& \frac{x+3}{2}=-2 \\
& x+3=-4 \\
& x=-7 \\
& \text { Therefore } \mathrm{g}^{-1}(-2)=-7
\end{aligned}
$$

A1 Total 4

22 (a)

$\sin 0^{\circ}$	$\sin 30^{\circ}$	$\sin 45^{\circ}$	$\sin 60^{\circ}$	$\sin 90^{\circ}$
0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

(b) Area $A B C=\frac{1}{2} \times 6 \times 8 \times \sin 30^{\circ}$

$$
\begin{aligned}
&=24 \times \frac{1}{2} \\
&=12 \mathrm{~cm}^{2} \\
& \text { Area } P Q R=\frac{1}{2} \times 3 \times 8 \times \sin 45^{\circ} \\
&=12 \times \frac{\sqrt{2}}{2} \\
&=6 \sqrt{2} \mathrm{~cm}^{2} \\
& \text { Triangle } A B C \text { has the larger area }
\end{aligned}
$$

Total 4

23 Sub $P(2 a, a)$ into equation: $(2 a)^{2}+a^{2}=80$

$$
5 a^{2}=80
$$

$$
a^{2}=16
$$

$$
a=4 \quad \text { [can't be }-4 \text { as positive constant] }
$$

P is $(8,4)$
Gradient of $O P=\frac{4-0}{8-0}=\frac{1}{2}$
Gradient of tangent $=\frac{-1}{\left|\frac{1}{2}\right|}=-2$
Equation of tangent: $\quad y=-2 x+c$

$$
\begin{aligned}
& 4=(-2 \times 8)+c \quad \text { M1 } \\
& c=4+16=20
\end{aligned}
$$

Hence,

$$
y=-2 x+20
$$

y-intercept $=20$ so R is $(0,20)$
Crosses x-axis when $y=0$:

$$
\begin{aligned}
& 0=-2 x+20 \\
& 2 x=20 \\
& x=10 \text { so } Q \text { is }(10,0)
\end{aligned}
$$

Area of $O Q R=\frac{1}{2} \times 10 \times 20=100$

24 (a) $\overrightarrow{X Y}=\overrightarrow{X O}+\overrightarrow{O Y}$

$$
\begin{array}{ll}
=-\frac{1}{2} \overrightarrow{O A}+\frac{1}{3} \overrightarrow{O C} & \text { M1 } \\
=-2 \mathbf{p}+2 \mathbf{q} & \text { A1 }
\end{array}
$$

(b) $\overrightarrow{B C}=\overrightarrow{B O}+\overrightarrow{O C}$

$$
=-\overrightarrow{O B}+\overrightarrow{O C}
$$

$$
=-(3 \mathbf{p}+3 \mathbf{q})+6 \mathbf{q}
$$

$=-3 p+3 q$

$$
=\frac{3}{2} \overrightarrow{X Y}
$$

As $\overrightarrow{B C}$ is a multiple of $\overrightarrow{X Y}$ they have the same direction so $B C$ is parallel to $X Y$

A1 Total 4

25 (a) $x^{2}+4 x-3=(x+2)^{2}-2^{2}-3$
M1
$=(x+2)^{2}-7$
A1
(b) $(x+2)^{2}-7=0$
$(x+2)^{2}=7$
$x+2= \pm \sqrt{7}$
$x=-2 \pm \sqrt{7}$
(c) $y=1 \pm \sqrt{2}$
$y-1= \pm \sqrt{2}$
$(y-1)^{2}=2$
M1
$y^{2}-2 y+1=2$
$y^{2}-2 y-1=0$
$a=-2$ and $b=-1$
A1 Total 6

