Mathematics

 Paper 3 (Calculator)

 Paper 3 (Calculator)}

Foundation Tier

Churchill Paper 3C - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer
Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
 Maths

Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence
$2 \quad 1.8 \mathrm{~m}=180 \mathrm{~cm}$
$180 \div 6=30$ pieces

0	3	20

$3 \quad 1 \times 25=25$ and $5 \times 5=25$
Factors are 1,5 and 25
It has 3 factors
2
$3 \quad 4$
$4 \quad 5$
B1
Total 1
$4 \quad 3 \div 40=0.075$
$0.035 \quad 0.07$

0.35
B1 Total 1

5 (a) $5 \times 2=10$ people
B1
(b) Environment $=7$ people

Economy = 15 people
$2 \times 7=14$
As 15 is more than twice 7, Holly is correct
M1 A1 Total 3
$6 \quad \frac{3}{5}=\frac{6}{10}=60 \%$
B1
$\%$ with packed lunch $=100-60-5=35 \%$
Ratio is $35: 5$
M1 A1
$=7: 1$
[If using 140: at school $=84$, home $=7$, packed $=49$; ratio $=49: 7=7: 1$]
Total 3

7
(a) $=10 \times 17=170 \mathrm{~cm}$
M1 A1
(b) e.g. As the height of the new figure is less than the mean height of the other figures it will lower the mean

8
(a) Length on diagram $=10.8 \mathrm{~cm}$
[10.7 to 10.9 cm]
Actual length $=5.4 \mathrm{~m}=540 \mathrm{~cm}$
Ratio $=10.8: 540$

$$
\begin{aligned}
& =1: 540 \div 10.8 \\
& =1: 50
\end{aligned}
$$

[In both parts allow 0.1 cm measuring error stated and followed through]
(b) Height on diagram $=4.2 \mathrm{~cm}$

Actual height $=50 \times 4.2$

$$
=210 \mathrm{~cm} \quad[\text { or } 2.1 \mathrm{~m}] \quad \mathrm{A} 1
$$

93 pm to midnight $=9$ hours
Midnight to 11am $=11$ hours
Total time $=9+3 \times 24+11=92$ hours M1
Cost from BigDig $=20+92 \times 2 \quad$ M1

$$
=20+184=£ 204
$$

With Machines4U, pay for 3pm Monday to 3pm Friday $=4$ days
Cost from Machines $4 \mathrm{U}=60+40 \times 3$

$$
=60+120=£ 180
$$

Machines4U will be cheaper by $£ 24$
A1 Total 4

10 (a)

x	-1	0	1	2	3
y	-4	-1	2	5	8

(b)

M1 A1

Total 4
$113 x-15=5 x$
$-15=2 x$
$x=-15 \div 2=-7.5$
$\begin{array}{llllll}-12.5 & -7.5 & -5 & -2.5 & \text { B1 Total } 1\end{array}$

12 (a) $19+52=71$
Estimate $=\frac{19}{71} \quad[$ or $0.268(3 \mathrm{sf})$]
B1
(b) $19+26=45$
$71+26+45=142$
Estimate $=\frac{45}{142} \quad[$ or 0.317 (3sf)]
M1 A1
[Note that $26+45=71$, as in (a), so $\frac{26}{71}$ is not a BETTER estimate]
(c) e.g. It is based on a larger sample of tickets

B1 Total 4

13 (a)

Starter	Main	Dessert
Soup	Lasagne	Brownie
Soup	Lasagne	Fruit
Soup	Fish \& Chips	Brownie
Soup	Fish \& Chips	Fruit
Pate	Lasagne	Brownie
Pate	Lasagne	Fruit
Pate	Fish \& Chips	Brownie
Pate	Fish \& Chips	Fruit

(b) Total cost $=4 \times 8.50+4 \times 1.80+2 \times 1.50$

$$
\begin{aligned}
& =34.00+7.20+3 \\
& =£ 44.20
\end{aligned}
$$

Tip $=50-44.20=£ 5.80$
Tip as $\%=\frac{5.80}{44.20} \times 100 \%$ M1

$$
=13.122 . . . \%
$$

The tip was 13% of the bill (nearest whole number)
A1
Total 5

14 (a)

(b)

16 As $A B=A C$ the triangle is isosceles
Hence, angle $A C B=$ angle $A B C=x+10$
The angle sum of a triangle is 180° so

$$
\begin{aligned}
& 3 x-5+x+10+x+10=180 \\
& 5 x+15=180 \\
& 5 x=165 \\
& x=165 \div 5=33
\end{aligned}
$$

Angle $A C B=33+10=43^{\circ}$
Total 4

17 (a) 4 weeks $=28$ days
$4 \times 28=112$ cups of coffee in 4 weeks
Weight in one cup $=200 \div 112=1.7857 \ldots$

$$
=1.79 \mathrm{~g}(3 \mathrm{sf})
$$

A1
(b) 200 g of coffee contains $2 \times 4.2=8.4 \mathrm{~g}$ of caffeine

This lasts him 28 days
Amount per day $=8.4 \div 28=0.3 \mathrm{~g}$
M1 A1 Total 4

18 Myra got 6-3 = 3 portions more than Louise
3 portions $=12$ cards
M1
1 portion $=12 \div 3=4$ cards
M1

Nell got 7 portions $=7 \times 4=28$ cards
e.g. Cube numbers up to 200 are:
$1^{3}=1, \quad 2^{3}=8, \quad 3^{3}=27, \quad 4^{3}=64, \quad 5^{3}=125$
So Kevin's number could be 2 more than any of these giving:
$3,10,29,66,127$
Subtracting 4 from these (to try to get a square number):
$-1,6,25,62,123$
25 is the only square number
Kevin's number is 29
A1 Total 3

20
(a) $10 \mathrm{~cm}=0.1 \mathrm{~m}$ and $40 \mathrm{~cm}=0.4 \mathrm{~m}$
M1
Area of base $=0.1 \times 0.4=0.04 \mathrm{~m}^{2}$
A1
(b) Pressure $=\frac{80}{0.04}=2000 \mathrm{~N} / \mathrm{m}^{2}$ M1 A1
(c) Jenna is not correct.
e.g. The force exerted on the table will be roughly the same but the area of contact is much smaller meaning the pressure is much greater
$21(z+8)(z-6)=0$
M1
$z=-8$ or $6 \quad$ A1
Total 2
$22\left(5 \times 10^{120}\right) \times\left(2 \times 10^{130}\right)=5 \times 2 \times 10^{120} \times 10^{130}$

$$
=10 \times 10^{250}
$$

$$
=10^{251}
$$

$10^{249} \quad 10^{25}$ $10^{251} \quad 10^{2500}$

B1
Total 1

23
(a) $\frac{2}{6} \quad\left[=\frac{1}{3}\right]$

B1
(b) e.g.

$\mathrm{B} \downarrow \mathrm{A} \rightarrow$	1	1	2	3	3	4
1			\checkmark	\checkmark	$\boldsymbol{\nu}$	$\boldsymbol{\iota}$
3						$\boldsymbol{\iota}$
4						
4						
4						
6						

[^0]M1 A1 Total 3

24
$29+12=41$
$41+14=55$
$55+16=71$
38
57
59
71
B1 Total 1

25 Speed $=\frac{\text { distance }}{\text { time }}$ so time $=\frac{\text { distance }}{\text { speed }}$
Jeff's time $=\frac{400}{6.5}=61.538 \ldots$ seconds
Distance $=$ speed \times time
In 20 seconds Mike covers $6.3 \times 20=126 \mathrm{~m}$
Mike still needs to run $400-30-126=244 \mathrm{~m}$
Mike's time from here $=\frac{244}{5.9}=41.355$ seconds
Mike's total time $=20+41.355 \ldots=61.355 \ldots$ seconds
Mike crosses the line first

26 (a) e.g. Each triangle has a right angle
In each triangle one of the angles is x^{0}
As the angles in a triangle add up to 180° the third angle in
each triangle must be the same size
All three angles are the same so the triangles are similar
(b) e.g.

$$
\begin{aligned}
& P Q=2 \times L M \\
& \text { So } \quad Q R=2 \times M N
\end{aligned}
$$

$$
=2 \times 5.5=11 \mathrm{~cm}
$$A1

(c) $\tan x=\frac{\mathrm{opp}}{\mathrm{adj}}=\frac{5.5}{3}$

$$
=1.83(3 \mathrm{sf}) \quad\left[\text { or } \frac{11}{6} \text { or } 1 \frac{5}{6}\right]
$$

27 Perpendicular height of one triangle $=\frac{1}{2} \times(20-x)$
Area of one triangle $=\frac{1}{2} \times x \times \frac{1}{2}(20-x)$

$$
=\frac{1}{4} x(20-x) \mathrm{cm}^{2}
$$

S.A. $=$ area of square base $+4 \times$ area of one triangle

$$
\begin{aligned}
& =x^{2}+4 \times \frac{1}{4} x(20-x) \\
& =x^{2}+x(20-x) \\
& =x^{2}+20 x-x^{2}
\end{aligned}
$$

M1

$$
=20 x \mathrm{~cm}^{2} \quad \mathrm{~A} 1
$$

[^0]: $\frac{5}{36}$

