Mathematics

 Paper 3 (Calculator)

 Paper 3 (Calculator)}

Foundation Tier

Churchill Paper 3B - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer
Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
 Maths

Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 3B Marking Guide - AQA Foundation Tier

$\mathbf{1}$	-13.2	-6.8	6.8	13.2	B1	Total 1
$\mathbf{2}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	B1	Total 1
$\mathbf{3}$	(a) 0	$4 w$	$7 w$	$10 w$	B1	
	(b) $2 p^{3}$	p^{5}	p^{6}	p^{9}	B1	Total 2

$4 \quad 4 \times 2=8$ litres
$8 \times 1000=8000 \mathrm{ml}$ She has 8000 ml of lemonade B1
$30 \times 240=7200 \mathrm{ml}$ She uses 7200 ml of lemonade
M1
Amount left over $=8000-7200=800 \mathrm{ml}$
A1
Total 3

5
(a) $=7+6+5=18$

B1
(b) $=10-5=5$

B1
(c) Median $=\frac{1}{2}(35+1)$ th $=18^{\text {th }}$ value

Adding frequencies: $2+9=11,11+6=17,17+7=24$
So median is 8
Total no. payments $=2 \times 5+9 \times 6+6 \times 7+7 \times 8+6 \times 9+5 \times 10$

$$
\begin{aligned}
& =10+54+42+56+54+50 \\
& =266
\end{aligned}
$$

Mean $=266 \div 35=7.6$
Hence the mean is not higher than the median
M1
A1

M1
There are 2 portions of red counters
1 portion $=8 \div 2=4$
There are 5 portions of green counters
$5 \times 4=20$ so there are 20 green counters
Number of yellow counters $=40-8-20=12$
M1
A1

B1
(b)

B1
(c) $B G$ and $D E$

B1
Total 3
810% of $£ 12=£ 1.20$
$£ 12-£ 1.20=£ 10.80 \quad$ M1
So any 10-packs should be bought in A
To buy 20 bulbs, 2 of the 10 -packs cost $£ 21.60$ in A
$3 \times £ 4.99=£ 15-3 p=£ 14.97$
$2 \times £ 6=£ 12$
So best value is to get 3 of the 4-packs for $£ 12$ in B, otherwise use A M1
To buy 20 bulbs, 3 from B and 2 from A costs $£ 12+2 \times £ 4.99$ M1
$=£ 12+£ 9.98$
= £21.98
Mixing, can buy one 10-pack from A and 3 of the 4 -packs from B
Cost of 22 bulbs $=£ 10.80+£ 12=£ 22.80$
Cheapest way is to buy 2 of the 10 -packs from shop A for $£ 21.60$
[Can miss out mixing, must at least imply consideration of 2 of 10-pack from each shop and finding cheapest way to buy 5 of 4-pack]

9 e.g. The width of the square is $(x+8) \mathrm{cm}$
The height of the square is $3 x \mathrm{~cm}$
The sides of a square are all the same length
So

$$
\begin{array}{ll}
3 x & =x+8 \\
2 x & =8 \\
x & =4
\end{array} \quad \text { M1 }
$$

Side length of square $=3 \times 4=12$
Area of square $=12^{2}=144 \mathrm{~cm}^{2}$

10 (a) e.g. We only have information about how Omar and Phil's scores compare with how they did on the first test. This doesn't give us any information about their actual scores.
(b) Nancy: 44-40=4

$$
\frac{4}{40}=\frac{1}{10}=10 \%
$$

Phil: $\quad \frac{1}{8}=\frac{1}{8} \times 100 \%$

$$
=12.5 \%
$$

Nancy's score increased by 10\%
Omar's score increased by 11%
Phil's score increased by 12.5%
Phil had the biggest \% increase
A1 Total 4

11

360°
$720^{\circ} \quad 900^{\circ} \quad 1440^{\circ}$
B1 Total 1

12
(a) e.g.

$$
70=2 \times 5 \times 7
$$

(b) e.g.

$84=2^{2} \times 3 \times 7$
Common prime factors are 2 and 7
Common factors can have neither, one or both of these M1
Common factors are 1, 2, 7, 14
So there are exactly 4 common factors
A1 Total 5

13 Adira: Plumber cost $=30 \times 22.50=£ 675$
Assistant cost $=40 \times 15.50=£ 620$ M1
Materials cost $=0.9 \times 860=£ 774 \quad$ M1
Total cost $=675+620+774=£ 2069 \quad$ A1
Ben: Minimum cost $=60 \times 20+500=£ 1700$
Maximum cost $=90 \times 20+700=£ 2500 \quad$ B1
e.g. Pete should use Adira as her fixed price is less than the mid-point of the range of prices offered by Ben

B1
[There are other valid answers but they must be supported by calculations.]
Total 5
$14 P=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}$

B1 Total 1

15 (a) e.g. You can cover most of the distance on main roads and motorways and drive faster on them

B1
(b) 10 mile journey will be at 30 mph

Speed $=\frac{\text { distance }}{\text { time }}$ so time $=\frac{\text { distance }}{\text { speed }}$
Time for 10 miles $=\frac{10}{30}=\frac{1}{3}$ hour $=20$ minutes
M1
20 mile journey will be at 40 mph
Time for 20 miles $=\frac{20}{40}=\frac{1}{2}$ hour $=30$ minutes
It will take 10 minutes longer
(a) 5.5 m
(b) $12.35 \leq A<12.45$

17 (a) 3
B1
(b) $y=3 x+5$
(c) On the x-axis, $y=0$

$$
\begin{array}{ll}
\text { So } \quad & 0=3 x-2 \\
& 2=3 x \\
& \frac{2}{3}=x
\end{array}
$$

It crosses at $\left(\frac{2}{3}, 0\right)$

18 Total weight of cake before $=750+600=1350 \mathrm{~g}$
Total weight eaten $=1350 \div 2=675 \mathrm{~g}$
Weight of chocolate cake eaten $=0.54 \times 750=405 \mathrm{~g}$
Weight of carrot cake eaten $=675-405=270 \mathrm{~g}$
$\%$ of carrot cake eaten $=\frac{270}{600} \times 100 \%=45 \%$ Total 3
$197(p-2)<3 p+8$
$7 p-14<3 p+8 \quad$ M1
$7 p<3 p+22$
$4 p<22$ M1
$p<5.5$
A1
Total 3

20 Half of $1.8 \times 10^{5}=0.9 \times 10^{5}=9 \times 10^{4}$
0.9×10^{5}
9×10^{5}
9×10^{6}
9×10^{4}
B1 Total 1

21 (a) e.g. He has not done enough trials to get a reliable indication of whether or not it is biased.

B1
His statement assigns exact probabilities based on his trials which is not possible.
(b) e.g. With 100 trials she has got significantly more heads than tails so her coin is very likely to be biased.

B1 Total 3
$22 v=u+a t$
$v-u=a t$
$\frac{v-u}{a}=t$
$t=a v-u \quad t=\frac{v}{a}-u \quad t=\frac{u}{v-a} \quad t=\frac{v-u}{a}$

23 (a) e.g. Each term is 3 more than previous term
$20^{\text {th }}$ term will be $19 \times 3=57$ more than $1^{\text {st }}$ term
M1
$20^{\text {th }}$ term $=10+57=67 \quad$ A1
(b) e.g. $7^{\text {th }}$ term $=19+31=50$

M1
$8^{\text {th }}$ term $=31+50=81$
A1
Total 4

24 (a) 41°
All the angles are the same in similar shapes.
(b) $\frac{D E}{A B}=\frac{9}{5}=1.8$

$$
\begin{aligned}
& \text { So } \frac{D F}{A C}=1.8 \\
& \frac{D F}{11}=1.8 \\
& D F=1.8 \times 11 \\
& D F=19.8 \mathrm{~cm}
\end{aligned}
$$

A1 Total 3

25 (a) e.g. 10% of $£ 400=£ 40$
30% of $£ 400=3 \times £ 40=£ 120$ M1
$£ 400-£ 120=£ 280$
A1
(b) e.g. You start with 100% of your number

If you want to decrease it by 30% that leaves 70%
70% means 70 out of 100 which is 0.7
So multiplying by 0.7 decreases the number by 30%
B1
[Can be brief, must imply 100% less 30% is 70% which is 0.7]
(c) After 2 years $=0.7 \times £ 280=£ 196$

After 3 years $=0.7 \times £ 196=£ 137.20$
A1
$£ 137.20$ is $£ 137$ to the nearest pound
Total 5

26
(a) $=\frac{4}{3} \times \pi \times 4.6^{3} \quad$ M1
$=407.72 \ldots=408 \mathrm{~cm}^{3}$ (3sf)
A1
(b) Volume of cube $=407.72 \ldots \mathrm{~cm}^{3}$

Side length $=\sqrt[3]{407.72 \ldots} \quad$ M1
$=7.4151 \ldots$
Area of one face $=(7.4151 \ldots)^{2}$

$$
=54.984 \ldots
$$

Surface area $=6 \times 54.984 \ldots$.

