Mathematics

 Paper 3 (Calculator)

 Paper 3 (Calculator)}

Foundation Tier

Churchill Paper 3A - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer
Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
 Maths

Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence
$1=100 \times 10=1000$

10	100	500	B1	Total 1	
2	rhombus	kite	trapezium	rectangle	B1

$3 \quad 35 \div 7=5$
$84 \div 7=12$
$104 \div 7=14.8 \ldots$
$126 \div 7=18$
$35 \quad 84$

126
B1 Total 1
$420 \leq h<30 \quad 30 \leq h<40 \quad 40 \leq h<50 \quad 50 \leq h<60$
B1 Total 1
$5 \quad \frac{1}{5}$ of $550=110$
$\frac{2}{5}$ of $550=220$ M1
$\frac{1}{11}$ of $220=20$
$\frac{5}{11}$ of $220=100$
M1
$220-100=120$ so 120 women came to the launch
A1 Total 3

6 (a) Jess
B1
(b) Jo

B1
(c) Total hours $=125$

Hours overtime $=125-75=50$
Fraction overtime $=\frac{50}{125}=\frac{2}{5}$
M1 A1 Total 4
$7 \quad$ (a) e.g. $10 p, 5 p, 2 p, 2 p, 2 p$
[Or $3 \times 5 p$ and $3 \times 2 p$ or $1 \times 5 p$ and $8 \times 2 p$]
(b) $10 \mathrm{p}, 2 \mathrm{p}, 2 \mathrm{p}$
$5 p, 5 p, 2 p, 2 p$
$2 p, 2 p, 2 p, 2 p, 2 p, 2 p, 2 p$
M1 A1
(c) e.g.

1	no ways	2
3	no ways	$42 p$
5	$5 p$	6
7	$5 p, 2 p$	$2 p, 2 p, 2 p$
9	$5 p, 2 p, 2 p$	8
	10	$2 p, 2 p, 2 p, 2 p$

$10 p$ is the smallest amount
Total 5
$8 \quad 10 \%$ of $60=6$
20% of $60=12$
$60-12=48$
$12-5=7$
$\frac{1}{3}$ of $60=20$
$20-5=15$
M1
$48-15=33$

A1 Total 3
$9 \quad$ (a) $\quad 0.05 \times 3.2=0.16$
B1
(b) $\frac{1}{4} \times 8.4=2.1$

M1
$8.4+2.1=10.5$
A1
(c) $=\frac{5.76}{0.35}$
$=16.45714286$
A1 Total 5

10
(a) $5-3=2$

So 2 portions $=8$ sweets 1 portion = 4 sweets M1
There are 3 portions of green sweets
Number of green sweets $=3 \times 4=12$
A1
(b) There are 5 portions of red sweets

Number of red sweets $=5 \times 4=20$
Number of yellow sweets $=12-2=10$
Ratio red:yellow $=20: 10$
M1
= $2: 1$
A1
Total 4

There are 2 equal extra bits
Each must be $6 \div 2=3 \mathrm{~cm}$ long M1
Side length of square $=2 \times 3=6 \mathrm{~cm} \quad$ M1
Area of square $=6^{2}=36 \mathrm{~cm}^{2}$
A1
Total 3

12 (a) $m=9-7=2$
B1
(b) $4 y=12$

M1
$y=12 \div 4=3$
A1
(c) $\frac{a}{3}=6-1=5$ M1 $a=3 \times 5=15$

A1
Total 5
$1360 \mathrm{~km} / \mathrm{h}$ means 60 km in 60 minutes
So $\quad 1 \mathrm{~km}$ in 1 minute
45 km in 45 minutes
30 minutes 45 minutes 75 minutes 80 minutes

B1
Total 1

14 Area of circle $=\pi r^{2}$
Radius $=8 \div 2=4$
Area of circle $=\pi \times 4^{2}=16 \pi$
Area of semicircle $=\frac{1}{2} \times 16 \pi=8 \pi$
$4 \pi \quad 8 \pi \quad 16 \pi \quad 32 \pi$
B1 Total 1
$15 \quad 33 \div 8=4 \mathrm{r} 1$
M1
So 5 male teachers needed
M1
$30 \div 8=3 \mathrm{r} 6$
So 4 female teachers needed
$5+4=9$ teachers needed
A1 Total 3

16 (a) $=2 \times £ 7.80+3 \times £ 6.00$ M1
$=15.60+18.00$
$=£ 33.60$
A1
(b) Instead of spending $£ 33.60$ each week he spends $£ 25.50$

Saving per week $=33.60-25.50=£ 8.10$
M1
Saving per year $=46 \times £ 8.10=£ 372.60$
M1
Yes, Martin is correct
A1
Total 5

17 (a) e.g. $14+17+20=51$

$$
3 \times 17=51 \quad \text { M1 }
$$

Sian's claim is correct for these three terms A1
[Can use any 3 consecutive terms of given sequence]
(b) e.g. In arithmetic sequences, the gap between any 2 terms is the same. So, the $3^{\text {rd }}$ term is the same amount above the middle term as the $1^{\text {st }}$ term is below it. Adding the 3 terms together these cancel out so the total is 3 times the middle term.
[Allow explanation specific to given sequence]
(c) $4^{\text {th }}+5^{\text {th }}+6^{\text {th }}=3 \times 31=93 \quad$ M1
$5^{\text {th }}$ term $=31$
So, $4^{\text {th }}+6^{\text {th }}=93-31=62$
A1 Total 6

18 (a) B and D B1
(b) $p=4, q=-5 \quad$ B2
(c) 2
(d) $x=1$

B1 Total 5

19
(a) $21 \div 5=4.2$
M1
$4.2-3=1.2$
A1
(b) Let input $=x$
$5(x+3)=3 x$
$5 x+15=3 x$
$2 x=-15$
$x=-7.5 \quad$ The input was -7.5
A1

Total 4
$20=30000+3000$
$=33000$
$=3.3 \times 10^{4}$
$3.3 \times 10^{4} \quad 3 \times 10^{7} \quad 6 \times 10^{7} \quad 3 \times 10^{12}$
B1 Total 1

21 (a) $4 \%=0.04$
$0.04 \times 3000=£ 120$ M1
$3000+120=£ 3120$ in the account A1
(b) $0.04 \times 3120=£ 124.80$
$120+124.80=£ 244.80$
M1
To the nearest pound, total interest $=£ 245$ A1
Total 4

22 We have: 2 workers check 120 phones in 6 hours
So, $\quad 1$ worker checks 60 phones in 6 hours
1 worker checks 10 phones in 1 hour M1
Hence, 5 workers check 50 phones in 1 hour
$400 \div 50=8$

So, $\quad 5$ workers check 400 phones in 8 hours
A1
It takes them 8 hours
Total 2

B3

P	Q
15	6
30	12
$\mathbf{6 0}$	24
$\mathbf{7 5}$	30
7.5	$\mathbf{3}$

$6 \times 4=24$ so $15 \times 4=60$
$6 \times 5=30$ so $15 \times 5=75$
$15 \div 2=7.5$ so $6 \div 2=3$
Total 3
$245.05 \leq w<5.15$
$5.1 \leq w<5.2$
$5.0 \leq w<5.2$
B1 Total 1
$5.10 \leq w<5.15$

25 (a) Fraction at primary with no siblings $=\frac{90}{240}=\frac{3}{8}$
Estimate for secondary $=\frac{3}{8} \times 960=360$ M1 A1
(b) e.g. It is likely to be an overestimate.

Primary school pupils are young and those that don't have any siblings now may do by the time they are at secondary school. So the fraction without siblings is likely to be lower at the secondary school.

26 Let short edge of rectangle be $x \mathrm{~cm}$ long
The long edge fits with 2 short edges so is $2 x \mathrm{~cm}$ long
The area (of one side) of a piece is $2 x \times x=2 x^{2} \mathrm{~cm}^{2}$
There are $2 \times 8=16$ pieces so area (of one side) is $288 \div 16=18 \mathrm{~cm}^{2}$
$\begin{array}{ll}\text { So, } \begin{array}{l}2 x^{2}=18 \\ x^{2}=9 \\ x\end{array}=3 \text { [can't be }-3 \text { as it's a length] } & \text { M1 }\end{array}$
Dimensions of cuboid $=9 \mathrm{~cm}$ by 6 cm by 6 cm
M1
Volume of cuboid $=9 \times 6 \times 6=324 \mathrm{~cm}^{3}$ A1

Total 4

