For \boldsymbol{AQA}

Mathematics

Paper 2 (Calculator)

Foundation Tier

Churchill Paper 2C – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Churchill Maths

Written by Shaun Armstrong

Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 2C Marking Guide – AQA Foundation Tier

1	35	50	340	350		B1	Total 1
2	13	26	130	169		B1	Total 1
3	(a)	5 × 7 = 35 800 ÷ 35 = She can m	22.857				
		22	23	43	60	B1	
	(b)	22 × 35 = 800 – 770					
		5	6	30	31	B1	
	(c)	e.g. I have assumed that no dots get wasted because of mistakes in making the cards					Total 3
4	(a)	(1, -2)				B1	
	(b)			2 0 2 2 0 2 2 A 4	A 6 x words of C being the same	B1	
	(c)	distance f	M1				
		e.g. (–2,	4) [Any point (bar i	midpoint of AB) on $y = 2 - x$]	A1	Total 4
5	Vote Rati		: 160	00 – 240 = 160		M1 A1	Total 2

Length + width = $22 \div 2 = 11$ Length × width = 24 so must be 3 cm by 8 cm

(C) e.g. 2 × 10.5 = 21 So half of rectangle of area 21 cm² M1 A1 [Many possible answers (doesn't have to be half a rectangle)] Total 5 Total caps = 36 + 12 = 48 After move, $\frac{1}{3}$ of caps are in Team B M1 $48 \div 3 = 16$ Number of caps in Team B has increased from 12 to 16 M1 Mel has 4 caps A1 Total 3

8

9	(a)	Smallest diameter = 18.0 mm Largest diameter = 28.4 mm Largest possible difference = 28.4 – 18.0 = 10.4 mm	B1	
	(b)	In order: 5p 1p 20p £1 10p 2p 50p £2 18.0 20.3 21.4 22.5 24.5 25.9 27.3 28.4 To the left of the £1 coin is the 20p coin	M1 A1	
	(c)	e.g. If one of the coins was a £1 coin then the combined thickness of the other 2 would be 6.05 – 3.15 = 2.9 mm The thinnest coin is the 1p which is 1.65 mm	M1	
		Two 1p coins together would be more than 3 mm thick So none of Owais's coins can be £1 coins	A1	Total 5
10	5% o 10%	of $\pounds 320 = \pounds 32$ of $\pounds 320 = \pounds 32 \div 2 = \pounds 16$ of $\pounds 45 = \pounds 4.50$ of $\pounds 45 = 4 \times \pounds 4.50 = \pounds 18$	M1	
	So, S	Saffiah earned £16 more basic but £18 less overtime tal, Liz earned more by £2	M1 A1	
	[Liz :	total = £365, Saffiah total = £336 + £27 = £363]		Total 3
11	(a)	14 - 6 = 8 8 ÷ 2 = 4 The output is 4	B1	
	(b)	$20 \times 2 = 40$ 40 + 6 = 46 The input is 46	M1 A1	
	(c)	e.g. An input of 14 must give an output of 4 $14 \div 2 = 7$ 7 - 3 would give 4 so the operation might be $- 3An input of 46 must give an output of 2046 \div 2 = 2323 - 3 = 20The operation that is covered up is - 3[B1 – Accept correct answer without working]$	B1	Total 4

 $1 \text{ m}^2 = 100^2 \text{ cm}^2 = 10000 \text{ cm}^2$ 20 $0.4 \text{ m}^2 = 0.4 \times 10000 = 4000 \text{ cm}^2$ 40 cm² 4000 cm² 40 000 cm² 400 000 cm² Total 1 B1 $0 \le N \le 9$. 10 ≤ *N* ≤ 19 $20 \le N \le 29$ 21 (a) $30 \le N \le 39$ Β1 (b) Number of Apps Frequency Midpoint Frequency × midpoint (N) $0 \le N \le 9$ 4 4.5 18 $10 \le N \le 19$ 11 14.5 159.5 $20 \le N \le 29$ 24.5 147 6 $30 \le N \le 39$ 7 34.5 241.5 $40 \le N \le 49$ 2 44.5 89 Total no. of apps = 18 + 159.5 + 147 + 241.5 + 89 = 655 M1 Mean $\approx \frac{655}{30} = 21.8 (3sf)$ M1 A1 Total 4

23 e.g. Dividing the square into 6 equal strips we have

TOTAL FOR PAPER: 80 MARKS