Mathematics

Paper 2 (Calculator)

Foundation Tier

Churchill Paper 2C - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer
Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
 Maths

Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 2C Marking Guide - AQA Foundation Tier

Churchill Paper 2C Marking Guide - AQA Foundation Tier						
$\mathbf{1}$	35	50	340	350	B1	Total 1
$\mathbf{2}$	13	26	130	169	B1	Total 1

3 (a) $5 \times 7=35$ dots for each pack
$800 \div 35=22.857 \ldots$
She can make 22 packs
$\begin{array}{llllll}22 & 23 & 43 & 60 & \text { B1 }\end{array}$
(b) $22 \times 35=770$
$800-770=30$ glue dots left over

5
6
31
B1
(c) e.g. I have assumed that no dots get wasted because of mistakes in making the cards

B1
Total 3
$4 \quad$ (a) $(1,-2)$
B1
(b)

B1
(c) [An indication on the graph or in words of C being the same distance from A and B to make an isosceles triangle]
e.g. ($-2,4$) [Any point (bar midpoint of $A B$) on $y=2-x$]
A1
Total 4

5 Votes for Mr. Jones $=400-240=160$
Ratio $=240: 160$ M1
$=\quad 3: 2$
A1
Total 2

6
(a) 2.7
(b) $=\frac{60.6}{3.68}$

$$
=16.467 \ldots
$$

$$
=16.5(1 \mathrm{dp})
$$

A1

Total 3
$7 \quad$ (a) e.g.

B1
[Many possible answers, most likely 3 by 4 or 2 by 6 rectangle sheared]
(b)

[M1 for A or P met] M1 A1

Length + width $=22 \div 2=11$
Length \times width $=24$ so must be 3 cm by 8 cm
(c) e.g. $2 \times 10.5=21$

So half of rectangle of area $21 \mathrm{~cm}^{2}$

A1
[Many possible answers (doesn't have to be half a rectangle)]
Total 5

8 Total caps $=36+12=48$
After move, $\frac{1}{3}$ of caps are in Team B M1
$48 \div 3=16$
Number of caps in Team B has increased from 12 to 16 M1
Mel has 4 caps
(a) Smallest diameter $=18.0 \mathrm{~mm}$

Largest diameter $=28.4 \mathrm{~mm}$
Largest possible difference $=28.4-18.0=10.4 \mathrm{~mm}$
(b) In order:

$5 p$	$1 p$	$20 p$	$£ 1$	$10 p$	$2 p$	$50 p$	$£ 2$	
18.0	20.3	21.4	22.5	24.5	25.9	27.3	28.4	M1
To the left of the $£ 1$ coin is the 20 p coin		A1						

(c) e.g. If one of the coins was a $£ 1$ coin then the combined
thickness of the other 2 would be $6.05-3.15=2.9 \mathrm{~mm}$
The thinnest coin is the 1 p which is 1.65 mm
Two 1 p coins together would be more than 3 mm thick So none of Owais's coins can be $£ 1$ coins
1010% of $£ 320=£ 32$
5% of $£ 320=£ 32 \div 2=£ 16 \quad$ M1
10% of $£ 45=£ 4.50$
40% of $£ 45=4 \times £ 4.50=£ 18$
So, Saffiah earned $£ 16$ more basic but $£ 18$ less overtime M1
In total, Liz earned more by $£ 2$
A1
[Liz total $=£ 365$, Saffiah total $=£ 336+£ 27=£ 363]$
Total 3

11 (a) $14-6=8$
$8 \div 2=4 \quad$ The output is 4
(b) $20 \times 2=40 \quad$ M1
$40+6=46$ The input is $46 \quad$ A1
(c) e.g. An input of 14 must give an output of 4
$14 \div 2=7$
$7-3$ would give 4 so the operation might be -3
An input of 46 must give an output of 20
$46 \div 2=23$
$23-3=20$
The operation that is covered up is -3
[B1 - Accept correct answer without working]
(a) e.g. Horizontal row will have 5 circles

Circles in vertical above: $0,2,4,6 \ldots$ so 8 in Pattern 5
Circles in vertical below the same so 8
$5+8+8=21$
M1 A1
[Lots of methods possible here and for (b) and (c). nth term is $5 n-4]$
(b) e.g. Each Pattern has 2 extra at top, 2 extra at bottom and 1 extra on right so 5 extra in total. 49 lots of 5 is 245 so we add 245 to the 1 circle on Pattern 1 giving 246.
(c) e.g. The number of circles always increases by 5 . Adding 5 to a number ending in 1 will give a number ending in 6 . Adding 5 to a number ending in 6 will give a number ending in 1. As the first Pattern has 1 circle, the number of circles will always be a number ending in 1 or 6 .
$13=5 y+10+2 y-6$
$=7 y+4$
M1

A1 Total 2

14
(a)

M1 A1
M1 A1

Total 4
$153 \times 3=9$ so $18 \times 3=54$
6
24 54 324
B1 Total 1

16 (a) e.g. Gethin has run
5.5 km in 30 minutes

He would run
1 km in $30 \div 5.5=5.45$.
M1
He would run

$$
20 \mathrm{~km} \text { in } 20 \times 5.45 \ldots
$$

$=109.09 \ldots$ minutes

$$
=1 \text { hour } 49 \text { minutes (nearest minute) A1 }
$$

(b) e.g. It is likely to have led to a smaller answer than is realistic B1 as he will probably get tired and slow down

17 (a) e.g. Because that point is an outlier - it does not fit with the trend of the rest of the data
(b) e.g. No, because the points plotted are the best for each age - it only takes one exceptional athlete to produce an outlier so it could be correct
(c)

≈ 11.9 seconds (from line of best fit)
[Line can consider or ignore the outlier]
(d) e.g. Because age 30 is outside the range of the data - it requires extrapolation and we don't know if the trend continues
$18550 \times 1.21=€ 665.50$
M1
$550 \times 1.25=€ 687.50$
$687.50-665.50=€ 22$
M1 A1 Total 3

19 (a) $3(x-7)=6$
$3 x-21=6$
$3 x=27 \quad$ M1
$x=9$
A1
(b) $\quad R=3 T+\frac{1}{2} M$
$R-3 T=\frac{1}{2} M \quad$ M1
$M=2(R-3 T) \quad[$ or $M=2 R-6 T] \quad$ A1 \quad Total 4
$20 \quad 1 \mathrm{~m}^{2}=100^{2} \mathrm{~cm}^{2}=10000 \mathrm{~cm}^{2}$
$0.4 \mathrm{~m}^{2}=0.4 \times 10000=4000 \mathrm{~cm}^{2}$
$40 \mathrm{~cm}^{2} \quad 4000 \mathrm{~cm}^{2} \quad 40000 \mathrm{~cm}^{2} \quad 400000 \mathrm{~cm}^{2} \quad$ B1 \quad Total 1

21
(a) $0 \leq N \leq 9 \quad 10 \leq N \leq 19 \quad 20 \leq N \leq 29 \quad 30 \leq N \leq 39 \quad$ B1
(b)

Number of Apps (N)	Frequency	Midpoint	Frequency \times midpoint
$0 \leq N \leq 9$	4	4.5	18
$10 \leq N \leq 19$	11	14.5	159.5
$20 \leq N \leq 29$	6	24.5	147
$30 \leq N \leq 39$	7	34.5	241.5
$40 \leq N \leq 49$	2	44.5	89

$\begin{array}{ll}\text { Total no. of apps }=18+159.5+147+241.5+89=655 & \text { M1 } \\ \text { Mean } \approx \frac{655}{30}=21.8(3 \mathrm{sf}) & \text { M1 A1 Total } 4\end{array}$

22

Arc of circle centre C, radius 8.5 cm
B1
Correct method of construction of bisector of angle BAC
Total 4

23 e.g. Dividing the square into 6 equal strips we have

M has 2 strips on one side and 4 on the other
N has 3 strips on each side
The shaded area is $2 \frac{1}{2}$ strips out of 6 strips
Fraction shaded $=\frac{2 \frac{1}{2}}{6}$

$$
=\frac{5}{12}
$$

A1 Total 3

24
(a) $\frac{1}{4}$
$\frac{5}{11}$

$\frac{11}{16}$
B1
(b) If the first card is algebra there will then be 4 algebra cards left out of the 15 cards left

$$
\begin{array}{rlrl}
\mathrm{P}(\text { both algebra }) & =\frac{5}{16} \times \frac{4}{15} & \mathrm{M} 2 \\
& =\frac{20}{240} & {\left[=\frac{1}{12}\right]} & \mathrm{A} 1
\end{array}
$$

Total 4

