Mathematics

Paper 2 (Calculator)

Foundation Tier

Churchill Paper 2B - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer
Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill

Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

1
(a) $=86-32=54$

54 55 84 86 B1
$\begin{array}{llllllllllll}\text { (b) } & 32 & 39 & -52 & -55 & 63 & 65 & 70 & -84 & -84 & -86\end{array}$ Median $=(63+65) \div 2=64$
63

$65 \quad 84$
B1
Total 2

2
$\begin{array}{ll}\text { e.g. } & 5 \times 1=5,5 \times 1.2=6 \\ \text { So } 1: 1.2 \text { is equivalent to } 5: 6 \\ \\ \text { [None of the others work] }\end{array}$
$0.8: 1$
4:6
$5: 6$

B1 Total 1

3
(a) 100 m 140 m $150 \mathrm{~m} \quad 280 \mathrm{~m}$
B1
(b) 7 seconds
B1
[Accept 6.5 to 7.5]
(c) $140-120=20 \mathrm{~m}$

B1 Total 3

42 of the 5 -packs costs $2 \times £ 1.80=£ 3.60$
B1
1 of the 5 -packs and 4 individual bars costs $£ 1.80+4 \times 42$ p

$$
\begin{aligned}
& =£ 1.80+£ 1.68 \\
& =£ 3.48 \\
& 2 n-£ 270
\end{aligned}
$$

9 individual bars costs $9 \times 42 p=£ 3.78$
The least she must spend is $£ 3.48$ A1
[Allow valid reasoning for not calculating other totals]
Total 3
$5 \quad \frac{5}{8} \quad \frac{3}{5} \quad \frac{1}{3}<\frac{3}{8}$
B1 Total 1

6 e.g. $\quad 50 \mathrm{~g}$ costs $£ 1.68 \div 3=56 \mathrm{p}$
M1
250 g costs $5 \times 56 \mathrm{p}=£ 2.80$
A1
Total 2

7 Tim has paid $3 \times £ 1.09=£ 3.27$
B1
Will has paid $2 \times £ 3.75=£ 7.50$
Total cost $=£ 3.27+£ 7.50=£ 10.77$
M1
Cost per person $=£ 10.77 \div 3=£ 3.59$
Tim is not correct, he has paid less that a third of the total
$8 \quad$ (a) $\frac{1}{4}$
(b) 60 deliveries are represented by 360°

So 1 delivery is represented by $360 \div 60=6^{\circ}$
Angle for 1 day $=42^{\circ}$
Number of deliveries $=42 \div 6=7$ deliveries
(c) Angle for 1 or 2 days $=192^{\circ}$

Angle for 6 or more days $=18^{\circ}$ $10 \times 18=180$
e.g. Jerome's statement is correct as the number that arrived in 1 or 2 days is 10 and a bit times the number in 6 or more days
[Can say true, false or approx. true as long as justified correctly]

9
(a) 27
(b) 31 and 39
(c) 37 and 47

B1
Total 3

10 (a) (-2, 3)
B1

$(0,-2) \quad$ B1
(c) $=\frac{1}{2} \times 2 \times 5$
$=5 \mathrm{~cm}^{2}$

$$
=5 \mathrm{~cm}^{-}
$$

A1
(d) Consider square of side 7 cm , top right corner at P

Area of this square $=7^{2}=49 \mathrm{~cm}^{2}$

$$
\text { Area } \begin{aligned}
A B C D & =49-4 \times 5 \\
& =49-20 \\
& =29 \mathrm{~cm}^{2}
\end{aligned}
$$

A1
Total 7

11 Angles on a straight line add up to 180°

$$
180-124=56^{\circ} \quad \text { M1 }
$$

Angles in small right-angled triangle add up to 180° $180-(90+56)=180-146=34^{\circ}$
Angles in large right-angled triangle add up to 180° $180-(90+34)=180-124=56^{\circ}$
$x=56$

12 (a)

	OS1	OS2	OS3	Total
Females	7	19	21	$\mathbf{4 7}$
Males	3	$\mathbf{1 8}$	32	53
Total	$\mathbf{1 0}$	$\mathbf{3 7}$	53	100

19, 47, 18, 53, 10, 37, 53 entered M1
$47-19=28$
$28 \div 4=7$
M1
7, 21, 3, 32 entered A1
(b) e.g. $\%$ females using OS2 $=\frac{19}{47} \times 100 \%=40.4 \%$
$\%$ males using OS2 $=\frac{18}{53} \times 100 \%=34.0 \%$
No, I do not agree with Marcus as the percentage of females using OS2 is significantly bigger
[Can get marks with different answer, must consider proportions]
Total 5
$131 \%=400000,0.01 \%=4000,0.02 \%=8000$
$£ 800000$ £80000 £8000 $£ 800$ B1 Total 1

14 e.g. If Mary gave Ryan 5 sweets she would have 5 less
and he would have 5 more
As they would then have the same number of sweets she must have originally had 10 more sweets than him
$3-2=1$ so 1 portion is 10 sweets
5 portions $=5 \times 10=50$ sweets
M1 A1
They have 50 sweets between them
Total 3

15 (a) Distance on map $\approx 8.4 \mathrm{~cm}$
(b)

Circle, radius 4 cm , centre Loron
B1
Correct method for perpendicular bisector of Mackle and Nagel M1
Correct region shaded and accurate

16 (a) January 2014 January 2016 June 2014 January 2017 B1
(b) e.g. No. Although the trend is for the number of applicants to decrease, there is a seasonal variation in which each June has more applicants than the previous January. Hence, June 17 will probably have more applicants than January 17. B2

Total 3
$17 \quad 2 \mathbf{a}=\binom{8}{2}$
$2 \mathbf{a}-\mathbf{b}=\binom{8}{2}-\binom{-2}{3}=\binom{10}{-1}$
$\binom{6}{-1} \quad\binom{6}{-5} \quad\binom{6}{-2} \quad\binom{10}{-1}$

18 Let rain in January be $x \mathrm{~mm}$
Rain in February $=(x+16) \mathrm{mm}$
Rain in March $=[(x+16)+5]=(x+21) \mathrm{mm} \quad$ M1
So,

$$
\begin{aligned}
& x+(x+16)+(x+21)=172 \\
& 3 x+37=172 \\
& 3 x=135 \\
& x=45 \\
& \text { mm of rain in January }
\end{aligned}
$$

There was 45 mm of rain in January
$192+3=5$
$60 \div 5=12$
$2 \times 12=24$, so she needs 24 litres of pineapple
$24 \div 1.5=16$, so she needs 16 cartons of pineapple
Each carton costs $£ 1.30$ so 16 cartons cost $16 \times £ 1.30=£ 20.80$
$3 \times 12=36$, so she needs 36 litres of mango
$36 \div 4=9$, so she needs 9 packs of 4 cartons
1 pack costs $£ 3.20$ so 9 packs cost $9 \times £ 3.20=£ 28.80$
Total cost $=£ 20.80+£ 28.80=£ 49.60$
Total sales $=190 \times 50 \mathrm{p}=£(190 \div 2)=£ 95$
Profit $=£ 95-£ 49.60=£ 45.40$
A1 Total 4

20 (a) The number of circles is twice the pattern number
Number of circles in Pattern $35=2 \times 35=70$
B1
(b) The number of squares is the pattern number squared

Number of squares in Pattern $50=50^{2}=2500$
(c) Number of circles in Pattern $3=6$

Number of circles in Pattern $4=8$
$6+8=14$
Number of circles in Pattern $7=2 \times 7=14$
B1
So Clive's rule works for these values
(d) e.g. The no. of circles is always twice the pattern number.

The no. of circles in Patterns x and y are just $2 x$ and $2 y$.
Adding we get $2 x+2 y$.
The no. of circles in Pattern $(x+y)$ is $2(x+y)$.
$2 x+2 y=2(x+y)$ so his rule will always work.
M1 A1
[Doesn't have to use x and y, key point is all double pattern no.]
(e) e.g. The number of squares is the pattern number squared

No. of squares in Pattern $2=2^{2}=4$
No. of squares in Pattern $6=6^{2}=36$
$4 \times 36=144 \quad$ M1
$2 \times 6=12$
No. of squares in Pattern $12=12^{2}=144 \quad$ M1
Yes, Naomi's rule works with these values A1
Total 8
Aunt Betty Aunt Shona

(b) $=0.7 \times 0.4=0.28$

22 (a) Volume $=1.3^{3}=2.197 \mathrm{~cm}^{3}$
Density $=\frac{\text { mass }}{\text { volume }}$
Density $=\frac{23}{2.197}=10.468 \ldots=10.5 \mathrm{~g} / \mathrm{cm}^{3}(1 \mathrm{dp})$
A1
(b) Volume $=2^{3}=8 \mathrm{~cm}^{3}$

Density $=\frac{\text { mass }}{\text { volume }}$
$d=\frac{\text { mass }}{8} \quad$ M1
Mass $=8 d \mathrm{~g}$
A1 Total 4

23 Fraction of circle $=\frac{100}{360}$
$\begin{array}{rlr}\text { Area of sector } & =\frac{100}{360} \times \pi \times 9^{2} & \mathrm{M} 1 \\ & =70.685 \ldots & \mathrm{M} 1 \\ & =70.7 \mathrm{~cm}^{2}(3 \mathrm{sf}) & \mathrm{A} 1\end{array}$
Total 3

24 (a) On the x-axis, $y=0$
So $\quad 0=(x-2)(x-8)$

$$
x=2 \text { or } 8
$$

The points are $(2,0)$ and $(8,0)$B1
(b) The curve is symmetrical

So x-coord of P is halfway between 2 and 8
$2+8=10$
$10 \div 2=5 \quad$ The x-coordinate of point P is 5
(c) When $x=5, \quad y=(5-2)(5-8)$
$y=3 x-3$
$y=-9 \quad$ The y-coordinate of point P is -9
B1
Total 4

