Mathematics

Paper 2 (Calculator)

Foundation Tier

Churchill Paper 2A - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 2A Marking Guide - AQA Foundation Tier

7 (a) e.g. The mean cost for each person's food and drink
B1
(b) Actual total $=2 \times £ 4.85+5 \times £ 5.99+3 \times £ 2.95+4 \times £ 3.50$

M1 A1

$$
\begin{aligned}
& =£ 9.70+£ 29.95+£ 8.85+£ 14 \\
& =£ 62.50
\end{aligned}
$$

Millie's estimate $=£ 63$
She overestimated by 50 p
M1 A1 Total 5

8
(a) Triangular prism

B1
(b) Angle $A B C=90^{\circ}$

Angle $B H C=45^{\circ}$
B1
Angle CHF $=90^{\circ}$
B1
Total 4

9 Must be 4-digit and start with 4 or 7
Must end with 2 or 4
So:
4372
4732
(any 2) B1
7342
7432
7234
7324
(all, no extras) B1
Total 2
$10 \quad 3+4=7$
$84 \div 7=12$
M1
$3 \times 12=36$
$4 \times 12=48$
36 and 48
A1 Total 2

11 (a) e.g. $1+20=21$, not square
$4+20=24$, not square
$9+20=29$, not square
M1
$16+20=36$, square
The two numbers are 16 and 36
The sum $=16+36=52 \quad$ A1
(b) e.g. 1 Factors 1

2 Factors 1,2
3 Factors 1, 3
4 Factors 1, 2, 4
5 Factors 1,5
6 Factors 1, 2, 3, 6
7 Factors 1,7
8 Factors 1, 2, 4, 8
$1+2+4+8=15 \quad$ The number is $8 \quad$ A1 \quad Total 4

12 (a) 9 callers gave a rating of 8 or more
Percentage $=\frac{9}{20} \times 100 \%=45 \%$

B1
(b)

5 (from their line, accept nearest whole number or raw value)
A1 Total 3

13 (a) e.g. 2.3 km costs $£ 4.20$
1 km costs $£ 4.20 \div 2.3=£ 1.826 \ldots$
6.1 km costs $6.1 \times £ 1.826 \ldots=£ 11.139 \ldots \quad$ M1

As it is Sunday, cost $=1.5 \times £ 11.139 \ldots=£ 16.708 \ldots \quad$ M1
I estimate the taxi will cost $£ 16.71$ A1
(b) e.g. I have assumed that the cost increases smoothly with distance rather than charging for each half km etc.

B1
Total 4

14 (a) There must be a whole number of each so there must be at least 8 girls
There will then be 5 boys
Smallest number of children $=8+5=13$
(b) e.g. $60 \%=\frac{3}{5}$

There must be a whole number of each so there must be at least 5 vans M1
Smallest number of lorries $=5+3=8$

15 Let Gill have $£ x$ so Kat has $£ 4 x$
After spending $£ 3$ Kat has $£(4 x-3) \quad$ M1
Kat now has twice as much as Gill so:

$$
\begin{aligned}
& 4 x-3=2 x \\
& 2 x-3=0 \\
& 2 x=3
\end{aligned}
$$

$$
x=1.5 \quad \text { M1 }
$$

Gill has $£ 1.50$
So Kat now has $2 \times £ 1.50=£ 3$
[Quick method: £3 must be equal to 2 lots of what Gill has.]
Total 3

16 (a) $=\frac{3}{2} \times 4=6$ eggs B1
(b) $75 \div 30=2.5$

M1
$2.5 \times 250=625 \mathrm{ml}$ of milk
A1
(c) $20 \div 4=5$ lots of 4 eggs
$2000 \div 250=8$ lots of 250 ml milk M1
$500 \div 30=16$ and a bit lots of 30 g butter
Smallest of these is 5 lots of 4 eggs
She can make $5 \times 2=10$ portions
A1
Total 5

17

Using Pythagoras' $\quad a^{2}+b^{2}=c^{2}$

$$
\begin{array}{lc}
50^{2}+200^{2}=c^{2} & \text { M1 } \\
2500+40000=c^{2} & \\
42500=c^{2} & \text { M1 } \\
c=\sqrt{42500} & \\
c=206.15 \ldots &
\end{array}
$$

The ladder is 206 cm long (3sf)
$1840 \%=0.4$ so men : women $=1: 1.4$

$$
\begin{aligned}
& =10: 14 \\
& =5: 7
\end{aligned}
$$

$\begin{array}{llll}5: 7 & 5: 2 & 2: 3 & 2.5\end{array}$
B1 Total 1

19 (a) Mortle to Numby on map $\approx 3.8 \mathrm{~cm}$
Numby to Otton on map $\approx 8.5 \mathrm{~cm}$
Total distance on map $=3.8+8.5=12.3 \mathrm{~cm}$ M1
Actual distance $=5 \times 12.3=61.5 \mathrm{~km} \quad \mathrm{M} 1$
Time taken $=30+50=80$ minutes
80 minutes $=80 \div 60=1 \frac{1}{3}$ hours
Average speed $=61.5 \div 1 \frac{1}{3} \quad$ M1

$$
=46.125
$$

Lisa's average speed was $46 \mathrm{~km} / \mathrm{h}$ (2sf) A1
[Accept 45 to 47.5]
(b) e.g. It is likely to be an underestimate as it assumes the roads go in straight lines between the towns. The actual route will be quite a bit longer giving a higher average speed.

20 C lies on a straight line with an angle that is corresponding to 119°
So C $=180-119=61^{\circ}$
\mathbf{A}, \mathbf{B} and \mathbf{D} are not connected to the 119° by parallel lines so are unknown
A
B
C
D
B1
Total 1
$21 £ 500=€ 1.38 \times 500=€ 690$
M1
$€ 690-€ 465=€ 225$
$€ 225=£ 225 \div 1.31=£ 171.76$
M1 A1 Total 3

22 (a) Number of grey triangles $=2 \times$ pattern number $2 \times 22=44$ grey triangles B1
(b) In each pattern there are 2 more white triangles than grey ones

$$
\begin{aligned}
& 40 \times 2=80 \\
& 80+2=82 \text { white triangles }
\end{aligned}
$$

(c) Combining the rules for grey and white we have

23 (a) $78-48=30,60-48=12$

$$
30+48+12=90
$$

$$
200-90=110
$$

(b) $\begin{array}{ll}=\frac{110}{200} \quad\left[=\frac{11}{20}\right]\end{array}$

24 Common difference $=7$ so nth term $=7 n+$?
0th term $=4-7=-3$
nth term $=7 n-3$
$4 n+7 \quad 4+7 n \quad 7 n+11 \quad 7 n-3$
B1 Total 1

25 e.g. Perimeter $=10 \times$ side length of square $=35 \mathrm{~cm}$
M1
So, side length of square $=35 \div 10=3.5 \mathrm{~cm}$
A1
Sides of rectangle measure $2 \times 3.5=7 \mathrm{~cm}$ and $3 \times 3.5=10.5 \mathrm{~cm}$
Area of rectangle $=7 \times 10.5=73.5 \mathrm{~cm}^{2}$
M1 A1 Total 4
$26 \quad y$-intercept $=-1$
B1
Gradient [using $(-4,1)$ to $(4,-3)]=\frac{-3-1}{4-(-4)}=\frac{-4}{8}=-\frac{1}{2}$ M1
Equation is $y=-\frac{1}{2} x-1$
A1
Total 3

27 (a) This approximation will have lowered her estimate as the actual value of π is larger than 3 , i.e. $3.14 \ldots$
(b) She has assumed the lichen covers a circular area.

The shape of the lichen will not be a perfect circle. It will have indents and bits sticking out which means that the actual area could be bigger or smaller.

B1 Total 3

