For \boldsymbol{AQA}

Mathematics

Paper 2 (Calculator)

Foundation Tier

Churchill Paper 2A – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Churchill Maths

Written by Shaun Armstrong

Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 2A Marking Guide – AQA Foundation Tier

1	8	9 800 900	B1	Total 1
2	5	200 500 5000	B1	Total 1
3	17, 3	34, 51, 68, 85, (102) so 5		
	1	2 5 6	B1	Total 1
4	-7	2 7 -63	B1	Total 1
5	(a)	17	B1	
	(b)	= 18 – 13 = 5	B1	
	(c)	17 + 13 + 17 + 16 + 14 + 15 + 15 + 18 + 17 + 17 = 159 mean = 159 ÷ 10 = 15.9	M1 A1	Total 4
6	(a)	0.7	B1	
	(b)	0.1 + 0.3 = 0.4 1 - 0.4 = 0.6	M1 A1	
	(c)	e.g. The probability of a red bead being picked is 0.1 which is $\frac{1}{10}$. There must be at least 1 red bead so there must be at least 10 beads for $\frac{1}{10}$ of the beads to be red.	B1	Total 4
7	(a)	e.g. The mean cost for each person's food and drink	B1	
	(b)	Actual total = $2 \times \pounds 4.85 + 5 \times \pounds 5.99 + 3 \times \pounds 2.95 + 4 \times \pounds 3.50$ = $\pounds 9.70 + \pounds 29.95 + \pounds 8.85 + \pounds 14$	M1 A1	
		= £62.50 Millie's estimate = £63 She overestimated by 50p	M1 A1	Total 5
8	(a)	Triangular prism	B1	
	(b)	Angle <i>ABC</i> = 90°	B1	
		Angle <i>BHC</i> = 45°	B1	
		Angle <i>CHF</i> = 90°	B1	Total 4

9		Must be 4-digit and start with 4 or 7 Must end with 2 or 4				
	So:		4372 4732 7342 7432	(any 2)	B1	
			7234 7324	(all, no extras)	B1	Total 2
10	84 ÷ 3 × ′	4 = 7 7 = 1 12 = 3 12 = 4	6		M1	
		nd 48			A1	Total 2
11	(a)	e.g.	1 + 20 = 21, not square 4 + 20 = 24, not square 9 + 20 = 29, not square 16 + 20 = 36, square The two numbers are 16 and 36 The sum = $16 + 36 = 52$		M1 A1	
	(b)	e.g.	1 Factors 1 2 Factors 1, 2 3 Factors 1, 3 4 Factors 1, 2, 4 5 Factors 1, 5 6 Factors 1, 2, 3, 6 7 Factors 1, 7		M1	
			8 Factors 1, 2, 4, 8 1 + 2 + 4 + 8 = 15 The number is 8		A1	Total 4

12	(a)	9 callers gave a rating of 8 or more Percentage = $\frac{9}{20} \times 100\% = 45\%$		
		25% 45% 55% 60%	B1	
	(b)	Customer		
		Satisfaction Rating		
		8 ** * *		
		6	M1	
		4		
		2		
		0 5 10 15 20 25 Waiting tir (minutes		
		5 (from their line, accept nearest whole number or raw value)	A1	Total 3
13	(a)	e.g. 2.3 km costs £4.20 1 km costs £4.20 ÷ 2.3 = £1.826		
		6.1 km costs 6.1 × £1.826 = £11.139 As it is Sunday, cost = 1.5 × £11.139 = £16.708	M1 M1	
		I estimate the taxi will cost £16.71	A1	
	(b)	e.g. I have assumed that the cost increases smoothly with distance rather than charging for each half km etc.	B1	Total 4
14	(a)	There must be a whole number of each so there must be at least 8 girls There will then be 5 boys		
		Smallest number of children = 8 + 5 = 13	B1	
	(b)	e.g. $60\% = \frac{3}{5}$		
		There must be a whole number of each so there must be at least 5 vans Smallest number of lorries = 5 + 3 = 8	M1 A1	Total 3

15	Let Gill have £x so Kat has £4x After spending £3 Kat has £(4x - 3) Kat now has twice as much as Gill so: 4x - 3 = 2x 2x - 3 = 0 2x = 3		M1	
		x = 1.5	M1	
	-	nas £1.50		
	SOF	Cat now has 2 × £1.50 = £3	A1	
	[Qui	ck method: £3 must be equal to 2 lots of what Gill has.]		Total 3
16	(a)	$=\frac{3}{2} \times 4 = 6$ eggs	B1	
	(b)	75 ÷ 30 = 2.5 2.5 × 250 = 625 ml of milk	M1 A1	
	(c)	$20 \div 4 = 5$ lots of 4 eggs $2000 \div 250 = 8$ lots of 250 ml milk $500 \div 30 = 16$ and a bit lots of 30 g butter Smallest of these is 5 lots of 4 eggs	M1	
		She can make 5 × 2 = 10 portions	A1	Total 5

19	(a)	Mortle to Numby on map ≈ 3.8 cm Numby to Otton on map ≈ 8.5 cm Total distance on map = $3.8 + 8.5 = 12.3$ cm Actual distance = $5 \times 12.3 = 61.5$ km Time taken = $30 + 50 = 80$ minutes 80 minutes = $80 \div 60 = 1\frac{1}{3}$ hours	M1 M1	
		Average speed = $61.5 \div 1\frac{1}{3}$	M1	
		= 46.125 Lisa's average speed was 46 km/h (2sf)	A1	
		[Accept 45 to 47.5]		
	(b)	e.g. It is likely to be an underestimate as it assumes the roads go in straight lines between the towns. The actual route will be quite a bit longer giving a higher average speed.	B2	Total 6
20	So C	s on a straight line with an angle that is corresponding to 119° c = 180 – 119 = 61° and D are not connected to the 119° by parallel lines so are unknown	I	_
	Α	B C D	B1	Total 1
21) = €1.38 × 500 = €690) – €465 = €225	M1	
	€228	$5 = \pounds 225 \div 1.31 = \pounds 171.76$	M1 A1	Total 3
22	(a)	Number of grey triangles = 2 × pattern number 2 × 22 = 44 grey triangles	B1	
	(b)	In each pattern there are 2 more white triangles than grey ones $40 \times 2 = 80$ 80 + 2 = 82 white triangles	M1 A1	
	(c)	Combining the rules for grey and white we have		
		Total number of triangles = 4 × Pattern number + 2	M1 A1	Total 5

23	(a)	$78 - 48 = 30, \ 60 - 48 = 12$ 30 + 48 + 12 = 90 200 - 90 = 110	M1	
		$\xi \begin{array}{ c c c } \hline & 110 & \text{Chemistry} \\ \hline & & & \\ \hline & & & \\ & $	A1	
	(b)	$= \frac{110}{200} \qquad [= \frac{11}{20}]$	B1	Total 3
24	0th te	mon difference = 7 so <i>n</i> th term = $7n + ?$ erm = $4 - 7 = -3$ erm = $7n - 3$		
	4n +	7 $4 + 7n$ $7n + 11$ $7n - 3$	B1	Total 1
25	e.g.	Perimeter = $10 \times \text{side}$ length of square = 35 cm So, side length of square = $35 \div 10 = 3.5 \text{ cm}$ Sides of rectangle measure $2 \times 3.5 = 7 \text{ cm}$	M1 A1	
		and $3 \times 3.5 = 10.5$ cm Area of rectangle = 7 × 10.5 = 73.5 cm ²	M1 A1	Total 4
26	-	ercept = -1	B1	
		lient [using (-4, 1) to (4, -3)] = $\frac{-3-1}{4-(-4)} = \frac{-4}{8} = -\frac{1}{2}$	M1	
	Equa	ation is $y = -\frac{1}{2}x - 1$	A1	Total 3
27	(a)	This approximation will have lowered her estimate as the actual value of π is larger than 3, i.e. 3.14	B1	
	(b)	The shape of the lichen will not be a perfect circle. It will have		
		indents and bits sticking out which means that the actual area could be bigger or smaller.	B1	Total 3

TOTAL FOR PAPER: 80 MARKS