Mathematics
 Paper 1 (Non-Calculator)

Foundation Tier

Churchill Paper 1C - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer
Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
 Maths

Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 1C Marking Guide - AQA Foundation Tier

5 (a) 4Fur: $4+9=13$
Petsus: $6+3=9$
Paws: $6+7=13$
Animalz: $8+6=14 \quad$ Animalz has the most staff
B1
(b) $=\frac{3}{6+3}=\frac{3}{9} \quad\left[=\frac{1}{3}\right]$

B1
(c) Full-time $=4+6+6+8=24$

Part-time $=9+3+7+6=25$
M1
More part-time than full-time so more than half are part-time Esme is correct

A1 Total 4

6 (a) e.g. 1005-70=935
$1005-69=936$
B1
(b) $=40 \div 2$

M1
$=20$
A1
(c) e.g.

228
$50 \times 3 \quad \frac{150}{78}$
$20 \times 3 \quad \frac{60}{18}$
$6 \times 3 \quad 18$

$$
228 \div 3=50+20+6=76
$$

$7 \quad 91=7 \times 13$ 91 97

B1
Total 1
$8 \quad$ (a) $\frac{2}{5}$
(b) $\frac{3}{5}$

B1
(c) 0

B1 Total 3

9 (a) Acute angle $=180-120=60^{\circ}$ M1
$a=360-60=300$ A1
(b) $81+45=126^{\circ}$
$360-126=234^{\circ} \quad$ M1
$b=234 \div 2=117 \quad$ A1
Total 4

10 (a)

20 litres ≈ 35 pints
B1
(b) e.g. 30 pints ≈ 17 litres

$$
60 \text { pints } \approx 2 \times 17=34 \text { litres } \quad \text { M1 A1 }
$$

(c) It is a straight line through the origin $(0,0)$

B1 Total 4

11 (a) If $£ 50$ was the smallest amount, the largest amount would be $200 \times £ 50=£ 10000$
The largest amount that could have been in box C is $£ 10000$
(b) If $£ 300$ was the largest amount, the smallest amount would be $£ 300 \div 200=£ 1.50$
The middle amount would be $10 \times £ 1.50=£ 15$ M1
$£ 300+£ 15+£ 1.50=£ 316.50$
The smallest total amount would be $£ 316.50$
A1 Total 4
(a) 8
(b) $=3+7=10$
(c) They have been on holiday in the UK but not been on holiday abroad in the last year
(d) e.g. As half had been on holiday in the UK, the number who had been on holiday in the UK must equal the number who had not, so:
$N+3=7+8 \quad$ M1
$N+3=15$
$N=12$
[OR: $N+3=\frac{1}{2}(N+3+7+8)$ and solve]

Total 5

13 (a) $81 \times 58.15 \approx 80 \times 60$

$$
=£ 4800
$$

(b) Increase $\approx 4800-4000=£ 800$

$$
\% \text { increase } \approx \frac{800}{4000} \times 100 \%
$$

$$
=\frac{1}{5} \times 100 \%=20 \%
$$

A1 Total 4

14

32	38	46	50	56	59

Median $=\frac{1}{2}(46+50)=48$
If e.g. 46 becomes 60 new median $=\frac{1}{2}(50+56)=53$, up 5
If e.g. 50 becomes 30 new median $=\frac{1}{2}(38+46)=42$, down 6
Largest change $=6$
4 5

6.5

B1 Total 1
1510% of $50=5 ; 40 \%$ of $50=4 \times 5=20$ go into 2 nd round 25% of $20=20 \div 4=5 ; 75 \%$ of $20=3 \times 5=15$ go into 3 rd round
9 go into 4 th round so fraction of wins in 3rd round $=\frac{9}{15}=\frac{3}{5}$
Percentage wins in 3rd round $=\frac{3}{5} \times 100 \%$

$$
=3 \times 20 \%=60 \%
$$

A1 Total 3

16 e.g. Width of strips $=\frac{1}{4}$ of side length of the original square
Length of strips = side length of the original square
So ratio of length to width of strips is $4: 1$
10 cm is made up of 1 length and 1 width
We need to divide 10 cm in the ratio $4: 1$
$4+1=5$
$10 \div 5=2$
Width of strips $=2 \mathrm{~cm}$
Side length of original square $=4 \times 2=8 \mathrm{~cm}$
Area of card $=8^{2}=64 \mathrm{~cm}^{2}$
M1 A1 Total 4

17

(a) | $=\frac{1}{2} \times \frac{7}{4}$ | M1 | |
| ---: | :--- | ---: |
| | $=\frac{7}{8}$ | A1 |
| (b) | $=\frac{12}{5} \times \frac{15}{4}$ | |
| | $=\frac{3}{5} \times \frac{15}{1}$ | M1 |
| | $=\frac{3}{1} \times \frac{3}{1}$ | |
| | $=9$ | M1 A |

18
(a) $=9-2$
M1
$=7$
A1
(b) e.g. $7^{2} \times 7^{2}=7^{4}$

M1

$$
\text { So } \quad \sqrt{2401}=\sqrt{7^{4}}=7^{2}=49
$$

A1
Total 4

19 (a) $45.99 \div 3=15+0.33=£ 15.33$
$45.99-15.33=£ 30.66$
(b) $\frac{2}{3}$ of usual price $=£ 48$
$\frac{1}{3}$ of usual price $=48 \div 2=£ 24 \quad$ M1
Usual price $=3 \times 24=£ 72 \quad$ A1
A1 Total 4

20 (a) $y=x^{3}$
(b) $y=\frac{1}{x}$

B1 Total 2

21 Gradient of $L=\frac{2-0}{(-3)-0}=-\frac{2}{3}$
Gradient of options is m in $y=m x+c$
Gradients $=\begin{array}{lllll}-\frac{2}{3} & \frac{2}{3} & -\frac{3}{2} & \frac{3}{2}\end{array}$
Parallel so same gradient, hence $y=4-\frac{2}{3} x$
$y=4-\frac{2}{3} x \quad y=\frac{2}{3} x-\frac{1}{3} \quad y=2$
She will have used $3 x$ twospots and $2 x$ eightspots
The numbers she has left will be: twospot: fourspot: $300-x \quad$ M1 eightspot: $300-2 x$
Hence, $\quad 300-x=2(300-3 x)$

$$
\begin{aligned}
& 300-x=600-6 x \\
& 5 x=300 \\
& x=60
\end{aligned}
$$

Number of eightspots left $=300-(2 \times 60)=300-120=180$
A1 Total 3

23 (a)

$$
5-2=3
$$

Perimeter $=2+4+2+5+2+3+4=22 \mathrm{~cm}$A1
(b) $=11^{2}+(7 \times 11)+4=121+77+4=202 \mathrm{~cm} \quad$ B1
(c) $n^{2}+7 n+4=82$
$n^{2}+7 n-78=0$
$(n+13)(n-6)=0 \quad$ M1
$n=-13$ or 6
Stage number must be positive so stage 6
$24 \quad 4^{-1}=\frac{1}{4}, \quad 1^{5}=1, \quad 3^{-3}=\frac{1}{27}, \quad 6^{0}=1, \quad 2^{2}=4$
(a) 2^{2}
B1
(b) 3^{-3}

B1
(c) 1^{5} and 6^{0}

B1
Total 3

25 Common difference $=6$ so nth term $=6 n+c$
$0^{\text {th }}$ term $=12-6=6$
nth term $=6 n+6$
$18 n-6 \quad 12 n+$
$6 n-6$
$6 n+6$
B1 Total 1

26 e.g.
$2 x+y=13$
(1)
$3 x-y=2$
(2)
(1) $+(2)$
$5 x=15$
M1
$x=15 \div 5=3$
M1
Sub (1) $\quad 6+y=13$
$y=13-6=7$
So, $x=3$ and $y=7$
A1 Total 3

